广西2020版高考数学一轮复习第二章函数2.9函数模型及其应用课件文.pptx
《广西2020版高考数学一轮复习第二章函数2.9函数模型及其应用课件文.pptx》由会员分享,可在线阅读,更多相关《广西2020版高考数学一轮复习第二章函数2.9函数模型及其应用课件文.pptx(34页珍藏版)》请在麦多课文档分享上搜索。
1、2.9 函数模型及其应用,-2-,知识梳理,双基自测,2,1,1.常见的函数模型 (1)一次函数模型:f(x)=kx+b(k,b为常数,k0); (2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a0);(4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a0,b0,b1); (5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m0,a0,a1); (6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a0);,-3-,知识梳理,双基自测,2,1,2.指数、对数、幂函数模型的性质比较,递增,递增,y轴,x轴,2,-4-,知识梳理,双基自测,3,4
2、,1,5,1.下列结论正确的打“”,错误的打“”. (1)幂函数增长比一次函数增长更快. ( ) (2)在(0,+)上,随着x的增大,y=ax(a1)的增长速度会超过并远远大于y=x(0)的增长速度. ( ) (3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题. ( ) (4)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x(4,+)时,恒有h(x)0,b1)增长速度越来越快的形象比喻. ( ),答案,-5-,知识梳理,双基自测,2,3,4,1,5,2.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为
3、( ),答案,解析,-6-,知识梳理,双基自测,2,3,4,1,5,3.(教材例题改编P123例1)某工厂生产一种产品的总成本y(万元)与产量x(台)之间的函数关系是y=0.1x2+10x+300(0x240,xN).若每台产品的售价为25万元,生产的产品全部卖出,则该工厂获得最大利润(利润=销售收入-产品成本)时的产量是( ) A.70台 B.75台 C.80台 D.85台,答案,解析,-7-,知识梳理,双基自测,2,3,4,1,5,4.(教材例题改编P123例2)在某个物理实验中,测量得变量x和变量y的几组数据,如下表.则x,y最适合的函数模型是( )A.y=2x B.y=x2-1 C.y
4、=2x-2 D.y=log2x,答案,解析,-8-,知识梳理,双基自测,2,3,4,1,5,5.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:已知加密为y=ax-2(x为明文,y为密文),如果明文“3”通过加密后得到密文为6,再发送,接收方通过解密得到明文“3”,若接收方接到密文为“14”,则原发的明文是 .,答案,解析,-9-,知识梳理,双基自测,2,3,4,1,5,自测点评 1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢. 2.充分理解题意,并熟练掌握几种常见函数的
5、图象和性质是解题的关键. 3.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.,-10-,考点1,考点2,考点3,考点4,思考生活中常见的哪些问题涉及的两个变量之间的关系是二次函数关系?,例1经市场调查,某商品在过去100天内的销售量和价格均为时间t(单位:天)的函数,且日销售量近似地满足g(t)=-,-11-,考点1,考点2,考点3,考点4,解:由题意知S(t)=g(t)f(t),解题心得在现实生活中,很多问题涉及的两个变量之间的关系是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数的图象与单调性解决.,-12-,考
6、点1,考点2,考点3,考点4,对点训练1某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图;B产品的利润与投资的算术平方根成正比,其关系如图(注:利润和投资单位:万元).,(1)分别将A,B两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集到18万元资金,并将全部投入到A,B两种产品的生产. 若平均投入生产两种产品,可获得多少利润? 问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?,-13-,考点1,考点2,考点3,考点4,-14-,考点1,考点2,考点3,考点4,-15-,考点1,考点2,考点3,考点4,
7、例2国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15 000元. (1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润? 思考分段函数模型适合哪些问题?,-16-,考点1,考点2,考点3,考点4,解:(1)设每团人数为x,由题意得0x75(xN*),飞机票价格为y元,(2)设旅行社获利S元,-17-,考点1,考点2,考点3,考点4,因为S=900x-15 000在区间(0,30上为增函数,故当x
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西 2020 高考 数学 一轮 复习 第二 函数 29 模型 及其 应用 课件 PPTX
