SAE ARP 6128-2013 Unmanned Systems Terminology Based on the ALFUS Framework《基于自治水平无人系统(ALFUS)框架的无人系统术语》.pdf
《SAE ARP 6128-2013 Unmanned Systems Terminology Based on the ALFUS Framework《基于自治水平无人系统(ALFUS)框架的无人系统术语》.pdf》由会员分享,可在线阅读,更多相关《SAE ARP 6128-2013 Unmanned Systems Terminology Based on the ALFUS Framework《基于自治水平无人系统(ALFUS)框架的无人系统术语》.pdf(13页珍藏版)》请在麦多课文档分享上搜索。
1、_ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising there
2、from, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions. Copyright 2013 SAE International All rights reserved. No part of this p
3、ublication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-497
4、0 (outside USA) Fax: 724-776-0790 Email: CustomerServicesae.org SAE WEB ADDRESS: http:/www.sae.org SAE values your input. To provide feedback on this Technical Report, please visit http:/www.sae.org/technical/standards/ARP6128 AEROSPACE RECOMMENDED PRACTICE ARP6128 Issued 2013-03 Unmanned Systems Te
5、rminology Based on the ALFUS Framework RATIONALE Common terminology is important to the user community as well as the standards committees to effectively communicate the technical issues and the application of other SAE AS-4 documents. TABLE OF CONTENTS 1. SCOPE 2 1.1 Purpose . 2 2. REFERENCES 2 2.1
6、 Applicable Documents 2 2.2 Related Publications . 3 2.3 Terminology/Definitions 3 3. NOTES 12 SAE ARP6128 Page 2 of 13 1. SCOPE This SAE Aerospace Recommended Practice (ARP) describes terminology specific to unmanned systems (UMSs) and definitions for those terms. It focuses only on terms used excl
7、usively for the development, testing, and other activities regarding UMSs. It further focuses on the autonomy and performance measures aspects of UMSs and is based on the participants earlier work, the Autonomy Levels for Unmanned Systems (ALFUS) Framework, published as NIST Special Publication 1011
8、-I-2.0 and NIST Special Publication 1011-II-1.0. This Practice also reflects the collaboration results with AIR5665. Terms that are used in the community but can be understood with common dictionary definitions are not included in this document. Further efforts to expand the scope of the terminology
9、 are being planned. 1.1 Purpose The purpose of this Aerospace Recommended Practice is to communicate to the unmanned systems community a common set of terminology and definitions that can be used as guidance for designing, developing, testing, or otherwise describing an unmanned system or any of its
10、 subsystems. 2. REFERENCES 2.1 Applicable Documents The following publications form a part of this document to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order. In
11、the event of conflict between the text of this document and references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. 2.1.1 SAE Publications Available from SAE Inte
12、rnational, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org. AIR5665 Architecture Framework for Unmanned Systems 2.1.2 NIST Publications Available from National Institute of Standards and Technology, 100 Bureau Dr
13、ive, Stop 1070, Gaithersburg, MD 20899-1070, Tel: 301-975-6478, www.nist.gov. NIST Special Publication 1011-I-2.0 Autonomy Levels for Unmanned Systems (ALFUS) Framework Volume I: Terminology, Version 2.0 NIST Special Publication 1011-II-1.0 Autonomy Levels for Unmanned Systems (ALFUS) Framework Volu
14、me II: Framework Models, Version 1.0 SAE ARP6128 Page 3 of 13 2.2 Related Publications The following publications are provided for information purposes only and are not a required part of this SAE Aerospace Technical Report. 2.2.1 ASTM Publications Available from ASTM International, 100 Barr Harbor
15、Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org. ASTM E2521 Standard Terminology for Urban Search and Rescue Robotic Operations ASTM F2541 Standard Guide for Unmanned Undersea Vehicles (UUV) Autonomy and Control ASTM F2395 Standard Terminology for Unmanned Air
16、 Vehicle Systems 2.3 Terminology/Definitions See Appendix A for references. 2.3.1 ACTUATOR A motor or mechanism capable of controlled prismatic (linear) or revolute (angular) motion. 2.3.2 AGENT An entity that can act on behalf of another entity. 2.3.3 AUTONOMOUS Operations of an unmanned system (UM
17、S) wherein the UMS receives its mission from the human or agent and accomplishes that mission with or without further human-robot interaction (HRI). The level of HRI, along with other factors such as mission complexity, and environmental difficulty, determine the level of autonomy for the UMS 2. Fin
18、er-grained autonomy level designations can also be applied to the tasks, lower in scope than mission. 2.3.3.1 Associated Terms Fully Autonomous - See under MODE OF UNMANNED SYSTEM OPERATIONS. Semi-Autonomous - See under MODE OF UNMANNED SYSTEM OPERATIONS. Autonomous Collaboration - The ability of a
19、UMS to collaborate with one or more manned vehicles or UMS without the need for an external controlling element. 2.3.4 AUTONOMOUS COLLABORATION See under Autonomous. 2.3.5 AUTONOMY a. The condition or quality of being self-governing 1. b. A UMSs own ability of sensing, perceiving, analyzing, communi
20、cating, planning, decision-making, and acting, to achieve its goals as assigned by its human operator(s) through designed human robot interface. Autonomy is characterized into levels by factors including mission complexity, environmental difficulty, and level of HRI to accomplish the missions. SAE A
21、RP6128 Page 4 of 13 2.3.5.1 Associated Terms Autonomy Level or Level of Autonomy - Set(s) of progressive indices, typically given in numbers, identifying a UMSs capability for performing autonomous missions. Two types of metrics are used, Detailed Model for Autonomy Levels and Summary Model for Auto
22、nomy Levels. Detailed Model for Autonomy Levels - A comprehensive set of metrics that represent multiple aspects of concerns, including mission complexity, environmental difficulty, and level of HRI that, in combination, indicate a UMSs level of autonomy. This model corresponds to the Summary Model
23、for Autonomy Levels. Summary Model for Autonomy Levels - A set of linear scales, 0 through 10 or 1 through 10, indicating the level of autonomy of a UMS. This model is derived from the UMSs Detailed Model for Autonomy Levels. 2.3.6 AUTONOMY LEVEL OR LEVEL OF AUTONOMY See under Autonomy. 2.3.7 AUTONO
24、MY LEVELS FOR UNMANNED SYSTEMS (ALFUS) A framework within which UMS autonomy can be characterized, identified, or evaluated with respect to the context. ALFUS is metrics based and provides a common vernacular to facilitate autonomous capability articulation. 2.3.8 BYSTANDER See under HUMAN ROBOT INT
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SAEARP61282013UNMANNEDSYSTEMSTERMINOLOGYBASEDONTHEALFUSFRAMEWORK 基于 自治 水平 无人 系统 ALFUS 框架 术语 PDF

链接地址:http://www.mydoc123.com/p-1023223.html