七年级数学上册第五章一元一次方程3应用一元一次方程_水箱变高了课件新版北师大版20190117387.pptx
《七年级数学上册第五章一元一次方程3应用一元一次方程_水箱变高了课件新版北师大版20190117387.pptx》由会员分享,可在线阅读,更多相关《七年级数学上册第五章一元一次方程3应用一元一次方程_水箱变高了课件新版北师大版20190117387.pptx(34页珍藏版)》请在麦多课文档分享上搜索。
1、第五章 一元一次方程,初中数学(北师大版)七年级 上册,知识点 几何图形的变换问题 在几何图形中,虽然形状和体积都可能发生变化,但在问题中仍会含有 一个相等关系.因此,要通过分析题意,找出能表示问题中全部含义的相 等关系,并根据这个相等关系列出方程.此类问题常见的有以下几种情况: (1)形状发生了变化,而体积不变,相等关系:变化前后体积相等; (2)形状、面积发生了变化,而周长不变,相等关系:变化前后周长相等;例 如将一根长方形的铁丝围成一个正方形的铁丝,其周长保持不变.,(3)常用几何图形变换公式. 周长公式:C正方形=4a,C长方形=2(a+b),C圆=2r=d. 面积公式:S三角形= a
2、h,S正方形=a2, S长方形=ab,S梯形= (a+b)h,S圆=r2. 体积公式:V长方体=abc,V正方体=a3, V圆柱=r2h,V圆锥= r2h. 例 要锻造一个底面直径为20 cm,高为16 cm的圆柱形毛坯,应截取直 径为16 cm的圆钢 cm.,解析 设截取直径为16 cm的圆钢x cm. 由体积相等得 16= x,解得x=25.,答案 25,题型一 形积变化体积不变 例1 在一个内部长、宽、高分别为3 m、3 m、80 cm的长方体水箱内装满水,然后倒入一个底面直径是2 m,高是12 m的圆柱形容器中,水是否会溢出?若不溢出,请求出水面离容器口的距离.(取3.14,结果精确到
3、0.01 m),解析 长方体水箱的容积为330.8=7.2(m3). 圆柱形容器的容积为 12=12=37.68(m3). 因为7.237.68,所以水不会溢出. 设将水倒入圆柱形容器后,水面离容器口的距离为x m. 由题意得330.8= (12-x), 解得x9.71. 则水面离容器口的距离约为9.71 m.,点拨 先分别求出两容器的容积,然后通过比较大小,确定水是否会溢出.,题型二 形积变化长度不变 例2 小刚家打算靠墙(墙长14 m)修建一个长方形的养鸡场(靠墙的一 边作为长),另三边用35 m长的篱笆围成.小刚的爸爸打算让养鸡场的长 比宽多2 m,小刚的妈妈打算让养鸡场的长比宽多5 m
4、.你认为谁的设计 合理?按照这种设计,养鸡场的面积是多少?,解析 设养鸡场的宽为x m. 按小刚的爸爸的设计,养鸡场的长应为(x+2)m. 根据题意,得x+2+2x=35, 解得x=11. 因为11+2=1314, 所以小刚的爸爸的设计合理, 这时养鸡场的面积为1311=143(m2).,按小刚的妈妈的设计,养鸡场的长应为(x+5)m. 依题意,得x+5+2x=35,解得x=10. 因为10+5=1514, 所以小刚的妈妈的设计不合理. 综上,小刚的爸爸的设计合理,此时养鸡场的面积为143 m2.,点拨 运用一元一次方程解决实际问题时,要注意解的合理性,即所得 结果必须符合实际情况.,知识点
5、几何图形的变换问题 1.一块长、宽、高分别为4 cm,3 cm,2 cm的长方体橡皮泥,要用它来捏 一个底面半径为 cm的圆柱,若圆柱的高是x cm,则可列方程为 .,答案 x=24,解析 长方体的体积为432=24 cm3,由体积相等列方程.,2.长方形的长比宽大5,周长为26,则长方形的宽为 .,答案 4,解析 设长方形的宽为x,则长为(x+5), 2x+2(x+5)=26,解得x=4, 即长方形的宽为4.,3.一个长方体合金块的长为80、宽为60、高为100,现要将其锻压成新 的长方体,使其底面为边长是40的正方形,则新长方体的高为 .,答案 300,解析 设新长方体的高为x,由题意得,
6、4040x=8060100,解得x=300.,4.在一个底面直径为3 cm,高为22 cm的量筒内装满水,再将量筒内的水 倒入底面直径为7 cm,高为9 cm的烧杯内,能否完全装下?若装不下,量筒 内水还剩多高?若能装下,求烧杯内水面的高度.,解析 设量筒内的水恰好装入底面直径为7 cm,高为x cm的烧杯中,则 22= x, 解得x= , 9. 答:烧杯能装下,此时烧杯内水面高度为 cm.,1.一个圆柱,底面半径增加到原来的3倍,而高度缩短为原来的 ,则变化 后的圆柱体积是原来圆柱体积的 ( ) A.8倍 B.2倍 C.3倍 D.9倍,答案 C 设原来圆柱底面半径为r,高为h,则体积为r2h
7、,半径增加到原 来的3倍,高度缩短到原来的 ,则此时圆柱的底面积为9r2,高为 h,则体 积为9r2 h=3r2h.故选C.,2.用一根小铁丝围成一个三条边长都为24 cm的三角形,如果将该铁丝 围成一个正方形,则正方形的边长是 ( ) A.24 cm B.18 cm C.12 cm D.9 cm,答案 B 设正方形的边长为x cm,则4x=243,解得x=18,故选B.,3.用直径为4 cm的圆钢,铸造三个底面直径为2 cm,高为16 cm的圆柱形 零件,需要截取 cm的圆钢.,答案 12,解析 设截取直径为4 cm的圆钢x cm, 则 x= 163,解得x=12.,4.要分别锻造底面直径为
8、70 mm,高为45 mm和底面直径为30 mm,高为3 0 mm的圆柱形零件毛坯各一个,需要截取直径为50 mm的圆钢多长?,解析 设截取直径为50 mm的圆钢x mm, 则 x= 45+ 30. 解得x=99. 答:需要截取直径为50 mm的圆钢99 mm.,1.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图5 -3-1所示.若设AE=x,则下列方程正确的是 ( )图5-3-1 A.6+2x=14-3x B.6+2x=x+(14-3x) C.14-3x=6 D.6+2x=14-x,答案 B 由题图可知,AB=2x+6=小长方形的长+x,又小长方形的长=14 -3x,故2x+
9、6=(14-3x)+x.,2.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容 量比为23,甲桶果汁与乙桶果汁的体积比为45,若甲桶内的果汁刚 好装满120个小纸杯,则乙桶内的果汁最多可装满多少个大纸杯?,解析 设乙桶内的果汁最多可装满x个大纸杯,则甲桶内的果汁最多可 装满 x个大纸杯,由题意,得1202= x3,解得x=100,则乙桶内的果汁最 多可装满100个大纸杯.,1.如图所示,将一个正方形纸条剪去一个宽为5 cm的长条后,再从剩下的 长方形条上剪去一个宽为3 cm的长条,且第一次剪下的长条面积是第二 次剪下的长条面积的2倍,若设原正方形纸条的边长为x cm,则可列方程 为
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学 上册 第五 一元一次方程 应用 水箱 课件 新版 北师大 20190117387 PPTX

链接地址:http://www.mydoc123.com/p-965911.html