2020版高考数学一轮复习第八章立体几何8.2空间几何体的表面积与体积课件文北师大版.pptx
《2020版高考数学一轮复习第八章立体几何8.2空间几何体的表面积与体积课件文北师大版.pptx》由会员分享,可在线阅读,更多相关《2020版高考数学一轮复习第八章立体几何8.2空间几何体的表面积与体积课件文北师大版.pptx(63页珍藏版)》请在麦多课文档分享上搜索。
1、8.2 空间几何体的表面积与体积,-2-,知识梳理,考点自诊,1.多面体的表(侧)面积 因为多面体的各个面都是平面,所以多面体的侧面积就是 ,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式,所有侧面的面积之和,2rl,rl,(r1+r2)l,-3-,知识梳理,考点自诊,3.柱、锥、台和球的表面积和体积,Sh,4R2,-4-,知识梳理,考点自诊,1.与体积有关的几个结论 (1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.长方体的外接球 (1)球心:体对角线的交点.,-5-,知识梳理,考点自诊,1.判断下列结
2、论是否正确,正确的画“”,错误的画“”. (1)如果圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2S. ( ) (2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3a2. ( ) (3)若一个球的体积为 ,则它的表面积为12. ( ) (4)在ABC中,AB=2,BC=3,ABC=120,使ABC绕直线BC旋转一周所形成的几何体的体积为9. ( ) (5)将圆心角为 ,面积为3的扇形作为圆锥的侧面,则圆锥的表面积等于4. ( ),-6-,知识梳理,考点自诊,2.(2018山东春季联考,19)已知矩形ABCD,AB=2BC,把这个矩形分别
3、以AB、BC所在直线为轴旋转一周,所成几何体的侧面积分别记为S1、S2,则S1与S2的比值等于 ( ) A. B.1 C.2 D.4,B,解析:设BC=a,AB=2a,所以S1=2(2a)a,S2=2(a)2a, S1S2=11,故选B.,3.(2018全国1,文5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ),B,解析:过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以 ,所以圆柱的表面积为2rl+2r2=8+4=12.,-7-,知识梳理,考点自
4、诊,4.(2018河北武邑中学四模,7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的外接球体积为( ),B,-8-,知识梳理,考点自诊,-9-,知识梳理,考点自诊,5.(2018辽宁大连调研,14)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为 .,11,-10-,考点1,考点2,考点3,空间几何体的表面积 例1(1)(2018河南模拟,9)某几何体的三视图如图所示,则该几何体的表面积为( ),A,-11-,考点1,考点2,考点3,(2)(2018河南一模,6)九章算术是我国古代数学名著,在九章算术中将底面为矩形且有一侧棱垂直于
5、底面的四棱锥称为“阳马”,若某“阳马”的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( ),C,-12-,考点1,考点2,考点3,-13-,考点1,考点2,考点3,(2)由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;主视图和左视图是腰长为1的两个全等的等腰直角三角形, 故四棱锥的底面是正方形,且边长为1,其中一条侧棱PD底面ABCD,且侧棱AD=1,-14-,考点1,考点2,考点3,思考求几何体的表面积的关键是什么? 解题心得1.以三视图为载体考查几何体的体积,解题的一般思路是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各
6、元素间的位置关系及数量关系,然后在直观图中求解. 2.求旋转体体积的一般思路是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量. 3.计算柱、锥、台的体积的关键是根据条件找出相应的底面积和高. 4.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.,-15-,考点1,考点2,考点3,对点训练1(1)(2018东北师范大学附属中学五模,7)一个几何体的三视图如图所示,其中主视图是半径为1的半圆,则该几何体的表面积为( ),C,-16-,考点1,考点2,考点3,(2)(2018广东深圳二模,6)一个几何体的三视图如图所示,其中俯视
7、图与左视图均为半径是2的圆,则这个几何体的表面积是( )A.16 B.14 C.12 D.8,A,-17-,考点1,考点2,考点3,-18-,考点1,考点2,考点3,空间几何体的体积(多考向) 考向1 公式法求体积 例2(2018四川成都诊断,8)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2 B.4 C.6 D.8,C,解析:由三视图可得,该几何体是底面为直角梯形的柱体,其中棱柱的高为2,底面积为 (1+2)2=3,可得几何体的体积为V=32=6,故选C.,-19-,考点1,考点2,考点3,思考由三视图求解几何体体积的解题策略是什么? 解题心得1.若所
8、给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. 2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. 3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.,-20-,考点1,考点2,考点3,对点训练2(2018黑龙江仿真模拟(十),8)在四棱锥P-ABCD中, PA底面ABCD,底面ABCD为正方形,PA=AB,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ),B,-21-,考点1,考点2,考点3,-22-,考点1,考点2,考点3,考向2 割补法
9、求体积 例3(2018广东广州调研,14)已知E,F分别是棱长为a的正方体ABCD-A1B1C1D1的棱AA1,CC1的中点,则四棱锥C1-B1EDF的体积为 .,-23-,考点1,考点2,考点3,解析: (方法一)如图所示,连接A1C1,B1D1交于点O1, 连接B1D,EF,过点O1作O1HB1D于点H. 因为EFA1C1,且A1C1平面B1EDF,EF平面B1EDF, 所以A1C1平面B1EDF. 所以C1到平面B1EDF的距离就是A1C1到平面B1EDF的距离. 易知平面B1D1D平面B1EDF, 又平面B1D1D平面B1EDF=B1D,所以O1H平面B1EDF, 所以O1H等于四棱锥
10、C1-B1EDF的高. 因为B1O1HB1DD1,-24-,考点1,考点2,考点3,-25-,考点1,考点2,考点3,思考割补法求体积适用于何种题型?割补法的割补原则是什么? 解题心得1.当一个几何体形状不规则时,无法直接运用体积公式求解,一般通过分割和补形.将原几何体分割或补形为较易的能利用公式计算体积的几何体,从而求得原几何体的体积. 2.割补法的原则是将不易求体积的几何体转化为易求体积的几个几何体,但要根据题意仔细分割,一般分割为已知底面面积或高易求的几个简单几何体,以免分割的几何体求不出体积.,-26-,考点1,考点2,考点3,对点训练3(1)(2018山东沂水一中三模,9)某几何体的
11、三视图如图所示,则该几何体的体积为( ),D,-27-,考点1,考点2,考点3,(2)(2018黑龙江哈尔滨六中押题(一),8)如图为一个多面体的三视图,则该多面体的体积为( ),B,-28-,考点1,考点2,考点3,-29-,考点1,考点2,考点3,-30-,考点1,考点2,考点3,考向3 等体积转化法求体积 例4(2018河北阜城月考,5)在直三棱柱ABC-A1B1C1中,各侧棱和底面的边长均为a,点D是CC1上任意一点,连接A1B,BD,A1D,AD,则三棱锥A-A1BD的体积为 ( ),B,-31-,考点1,考点2,考点3,思考等体积转化法适用于什么题型? 解题心得1.等体积转化法适用
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 一轮 复习 第八 立体几何 82 空间 几何体 表面积 体积 课件 北师大 PPTX
