2018年中考数学真题分类汇编(第二期)专题18图形的展开与折叠试题(含解析).doc
《2018年中考数学真题分类汇编(第二期)专题18图形的展开与折叠试题(含解析).doc》由会员分享,可在线阅读,更多相关《2018年中考数学真题分类汇编(第二期)专题18图形的展开与折叠试题(含解析).doc(16页珍藏版)》请在麦多课文档分享上搜索。
1、1图形的展开与叠折一.选择题(2018湖北江汉油田、潜江市、天门市、仙桃市3 分)如图是某个几何体的展开图,该几何体是( )A三棱柱 B三棱锥 C圆柱 D圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱【解答】解:观察图形可知,这个几何体是三棱柱故选:A【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解一.选择题2.(2018江苏徐州2 分)下列平面展开图是由 5 个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是( )A B C D【分析】由平面图形的折叠及正方体的展开图解题【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D 选项
2、可以拼成一个正方体,而 B 选项,上底面不可能有两个,故不是正方体的展开图故选:B【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形3.(2018江苏无锡3 分)下面每个图形都是由 6 个边长相同的正方形拼成的图形,其中能折叠成正方体的是( )2A B C D【分析】利用正方体及其表面展开图的特点解题能组成正方体的“一,四,一” “三,三”“二,二,二” “一,三,二”的基本形态要记牢【解答】解:能折叠成正方体的是故选:C【点评】本题主要考查展开图折叠成几何体的知识点,熟练正方体的展开图是解题的关键4. (2018遂宁4 分)如图,5 个完全相同的小正方体组成了一个几何体,则这个几何体的
3、主视图是( )A B C D【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形, 故选:D【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图5. (2018资阳3 分)如图是由四个相同的小正方体堆成的物体,它的正视图是( )3A B C D【分析】找到从正面看所得到的图形即可【解答】解:从正面看可得从左往右 2 列正方形的个数依次为 2,1,故选:A【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图6. (2018乌鲁木齐4 分)如图是某个几何体的三视图,该几何体是( )A长方体 B正方体 C三棱柱 D圆
4、柱【分析】根据常见几何体的三视图逐一判断即可得【解答】解:A.长方体的三视图均为矩形,不符合题意;B.正方体的三视图均为正方形,不符合题意;C.三棱柱的主视图和左视图均为矩形,俯视图为三角形,符合题意;D.圆柱的主视图和左视图均为矩形,俯视图为圆,不符合题意;故选:C【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图7. (2018湖州3 分)如图,已知在ABC 中,BAC90,点 D 为 BC 的中点,点 E 在AC 上,将CDE 沿 DE 折叠,使得点 C 恰好落在 BA 的延长线上的点 F 处,连结 AD,则下列结论不一定正确的是( )A. AE=EF B. AB
5、=2DEC. ADF 和ADE 的面积相等 D. ADE 和FDE 的面积相等【答案】C【解析】分析:先判断出BFC 是直角三角形,再利用三角形的外角判断出 A 正确,进而判断出 AE=CE,得出 CE 是ABC 的中位线判断出 B 正确,利用等式的性质判断出 D 正确详解:如图,连接 CF,点 D 是 BC 中点,4 BD=CD,由折叠知, ACB= DFE, CD=DF, BD=CD=DF, BFC 是直角三角形, BFC=90, BD=DF, B= BFD, EAF= B+ ACB= BFD+ DFE= AFE, AE=EF,故 A 正确,由折叠知, EF=CE, AE=CE, BD=C
6、D, DE 是 ABC 的中位线, AB=2DE,故 B 正确, AE=CE, S ADE=S CDE,由折叠知, CDE FDE, S CDE=S FDE, S ADE=S FDE,故 D 正确, C 选项不正确,故选:C点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键8. (2018嘉兴3 分)将一张正方形纸片按如图步骤,沿虚线对折两次,然后沿中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A. (A) B. (B) C. (C) D. (D)【答案】A【解析】 【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点
7、一定5在正方形的对角线上, 根据的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选 A【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键9. (2018黑龙江大庆3 分)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )A庆 B力 C大 D魅【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【解答】解:正方体的表面展开图,相对的面之间一定相
8、隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面故选:A10. (2018遂宁4 分)如图,5 个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是( )A B C D【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形, 故选:D【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图11. (2018资阳3 分)如图是由四个相同的小正方体堆成的物体,它的正视图是( )6A B C D【分析】找到从正面看所得到的图形即可【解答】解:从正面看可得从左往右 2 列正方形的个数依次为 2
9、,1,故选:A【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图12. (2018乌鲁木齐4 分)如图是某个几何体的三视图,该几何体是( )A长方体 B正方体 C三棱柱 D圆柱【分析】根据常见几何体的三视图逐一判断即可得【解答】解:A.长方体的三视图均为矩形,不符合题意;B.正方体的三视图均为正方形,不符合题意;C.三棱柱的主视图和左视图均为矩形,俯视图为三角形,符合题意;D.圆柱的主视图和左视图均为矩形,俯视图为圆,不符合题意;故选:C【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图二.填空题1. (2018湖南郴州3 分)如图,圆锥的母线长为 10c
10、m,高为 8cm,则该圆锥的侧面展开图(扇 形)的弧长为 12 cm (结果用 表示)【分析】根据圆锥的展开图为扇形,结合圆周长公式的求解【解答】解:设底面圆的半径为 rcm,由勾股定理得:r= =6,2r=26=12,7故答案为:12【点评】此题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般2.(2018江苏徐州3 分)如图,RtABC 中,B=90,AB=3cm,AC=5cm,将ABC 折叠,使点 C 与 A 重合,得折痕 DE,则ABE 的周长等于 7 cm【分析】根据勾股定理,可得 BC 的长,根据翻折的性质,可得 AE 与 CE
11、 的关系,根据三角形的周长公式,可得答案【解答】解:在 RtABC 中,B=90,AB=3cm,AC=5cm,由勾股定理,得 BC= =4由翻折的性质,得 CE=AEABE 的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7故答案为:7【点评】本题考查了翻折的性质,利用了勾股定理,利用翻折的性质得出 CE 与 AE 的关系是阶梯关键,又利用了等量代换3.(2018山东东营市3 分)如图所示,圆柱的高 AB=3,底面直径 BC=3,现在有一只蚂蚁想要从 A 处沿圆柱表面爬到对角 C 处捕食,则它爬行的最短距离是( )A B C D【分析】要求最短路径,首先要把圆柱的侧面展开,利用
12、两点之间线段最短,然后利用勾股定理即可求解【解答】解:把圆柱侧面展开,展开图如右图所示,点 A.C 的最短距离为线段 AC 的长在 RtADC 中,ADC=90,CD=AB=3,AD 为底面半圆弧长,AD=1.5,所以 AC= ,8故选:C【点评】本题考查了平面展开最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答4.(2018临安3 分.)马小虎准备制作一个封闭的正方体盒子,他先用 5 个大小一样的正方形制成如图所示的拼接图形(实线部分) ,经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 数学 分类 汇编 第二 专题 18 图形 展开 折叠 试题 解析 DOC
