2018_2019学年度高中数学第二章点、直线、平面之间的位置关系章末总结课件新人教A版必修2.ppt
《2018_2019学年度高中数学第二章点、直线、平面之间的位置关系章末总结课件新人教A版必修2.ppt》由会员分享,可在线阅读,更多相关《2018_2019学年度高中数学第二章点、直线、平面之间的位置关系章末总结课件新人教A版必修2.ppt(35页珍藏版)》请在麦多课文档分享上搜索。
1、章末总结,网络建构,知识辨析,判断下列说法是否正确(请在括号中填“”或“”) 1.如果一条直线过平面内一点与平面外一点,那么这条直线与这个平面有且只有一个交点. ( ) 2.如果两个平面有一个交点,则这两个平面有一条过这个点的公共直线.( ) 3.如果两个平面平行,则这两个平面没有交点.( ) 4.若一条直线上有两个点在某一平面内,则这条直线上有无数个点在这个平面内.( ) 5.平行于同一条直线的两个平面平行.( ) 6.一条直线垂直于一个平面内的三条直线,则这条直线垂直于这个平面.( ) 7.两个相交平面组成的图形叫做二面角.( ) 8.垂直于同一条直线的两个平面平行.( ),主题串讲 方法
2、提炼总结升华,一、平面基本性质的应用 【典例1】 在正方体ABCD-A1B1C1D1中,E,F分别是CC1和AA1的中点,画出平面BED1F与平面ABCD的交线,并说明理由.,解:在平面AA1D1D内,延长D1F, 因为D1F与DA不平行,所以D1F与DA必相交于一点, 设为P,则PFD1,PDA. 又因为D1F平面BED1F,DA平面ABCD, 所以P平面BED1F,P平面ABCD, 所以P为平面BED1F与平面ABCD的公共点. 又B为平面ABCD与平面BED1F的公共点,所以连接PB(如图),PB即为平面BED1F与平面ABCD的交线.,规律方法 证明三线共点常用的方法是先证明两条直线共
3、面且相交于一点;然后证明这个点在两个平面内,于是该点在这两个平面的交线上,从而得到三线共点.也可以证明直线a、b相交于一点A,直线b与c相交于一点B,再证明A、B是同一点,从而得到a、b、c三线共点.,即时训练1-1:如图所示,空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BGGC=DHHC=12.求证: (1)E,F,G,H四点共面; (2)EG与HF的交点在直线AC上.,证明:(1)因为BGGC=DHHC,所以GHBD. 因为E,F分别为AB,AD的中点,所以EFBD,所以EFGH, 所以E,F,G,H四点共面. (2)因为G,H不是BC,CD的中点,所以
4、EFGH,且EFGH, 所以EG与FH必相交,设交点为M,而EG平面ABC,HF平面ACD, 所以M平面ABC,且M平面ACD,所以MAC, 即EG与HF的交点在直线AC上.,二、空间线面位置关系的证明 【典例2】 在三棱柱ABC-A1B1C1中,侧棱与底面垂直,BAC=90,AB=AA1,点M,N分别为A1B 和B1C1的中点. (1)证明:A1M平面MAC;,证明:(1)因为A1A平面ABC,AC平面ABC,所以ACA1A, 又因为BAC=90,所以ACAB, 因为AA1平面AA1B1B,AB平面AA1B1B,AA1AB=A, 所以AC平面AA1B1B,又A1M平面AA1B1B,所以A1M
5、AC. 又因为四边形AA1B1B为正方形,M为A1B的中点,所以A1MMA, 因为ACMA=A,AC平面MAC,MA平面MAC,所以A1M平面MAC.,(2)证明:MN平面A1ACC1.,证明:(2)连接AB1,AC1,由题意知,点M,N分别为AB1和B1C1的中点,所以MNAC1.又MN平面A1ACC1,AC1平面A1ACC1,所以MN平面A1ACC1.,规律方法 空间中直线与直线、直线与平面、平面与平面之间位置关系的转化主要有: (1)平行关系的转化.,(2)垂直关系的转化. 线线垂直 线面垂直 面面垂直,(3)平行与垂直的转化.,即时训练2-1:如图,在四棱锥P-ABCD中,底面ABCD
6、是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F. (1)证明:平面PAC平面PBD;,证明:(1)由底面ABCD是正方形,知ACBD, 由侧棱PD底面ABCD,及AC平面ABCD知ACPD. 又PDBD=D, 故AC平面PBD. 又AC平面PAC, 从而,由平面与平面垂直的判定定理知,平面PAC平面PBD.,(2)证明:PB平面EFD.,证明:(2)在PDC中,由PD=DC,E是PC的中点,知DEPC. 由底面ABCD是正方形,知BCDC, 由侧棱PD底面ABCD,BC底面ABCD,知BCPD. 又DCPD=D,故BC平面PCD. 而DE平面PCD,所以DE
7、BC. 由DEPC,DEBC及PCBC=C,知DE平面PBC. 又PB平面PBC,故DEPB. 又已知EFPB,且EFDE=E, 因此PB平面EFD.,三、空间位置关系的证明与空间角的计算 【典例3】 如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD= PC=4,AB=6,点E是CD边的中点,点F,G分别在线段AB,BC上. (1)证明:PEFG;,(1)证明:因为PD=PC,点E为DC中点, 所以PEDC. 又因为平面PDC平面ABCD, 平面PDC平面ABCD=DC, 所以PE平面ABCD. 又FG平面ABCD,所以PEFG.,(2)求二面角P-AD-C的正切值.,规律方法
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 _2019 学年度 高中数学 第二 直线 平面 之间 位置 关系 总结 课件 新人 必修 PPT
