[专升本类试卷]专升本高等数学一(一元函数微分学)模拟试卷2及答案与解析.doc
《[专升本类试卷]专升本高等数学一(一元函数微分学)模拟试卷2及答案与解析.doc》由会员分享,可在线阅读,更多相关《[专升本类试卷]专升本高等数学一(一元函数微分学)模拟试卷2及答案与解析.doc(11页珍藏版)》请在麦多课文档分享上搜索。
1、专升本高等数学一(一元函数微分学)模拟试卷 2 及答案与解析一、选择题1 设 y=f(x)在点 x=1 处可导,且 =2,则 f(1)= ( )(A)2(B) 1(C)(D)02 若函数 y=f(x)有 f(x0)= ,则当 x0 时,该函数在 x=x0 处的微分 dy 是 ( )(A)与x 等价的无穷小(B)与 x 同阶的无穷小(C)比 x 低阶的无穷小(D)比x 高阶的无穷小3 设函数 y=3x+1,则 y= ( )(A)0(B) 1(C) 2(D)34 设函数 f(x)满足 f(sin2x)=cos2x,且 f(0)=0,则 f(x)= ( )5 设 f(ex)= ,则 f(x)= (
2、)6 曲线 y=x3(x 一 4)的拐点个数为 ( )(A)1 个(B) 2 个(C) 3 个(D)0 个7 设函数 f(x)=(1+x)ex,则函数 f(x) ( )(A)有极小值(B)有极大值(C)既有极小值又有极大值(D)无极值8 设两函数 f(x)及 g(x)都在 x=a 处取得极大值,则函数 F(x)=f(x)g(x)在 x=a 处( )(A)必取极大值(B)必取极小值(C)不可能取极值(D)是否取极值不能确定9 下列函数在给定区间满足拉格朗日定理条件的有 ( )(A)y=x,一 1,1(B) y=cosx,0,(C) y= , 一 1,1(D)y= ,一 2,210 设 x=x0
3、为 y=f(x)的驻点,则 y=f(x)在 x0 处不一定 ( )(A)连续(B)可导(C)取得极值(D)曲线 y=f(x)在点(x 0,f(x 0)处的切线平行于 x 轴二、填空题11 曲线 y=x+cosx 在点(0,1)处的切线的斜率 k=_12 设 f(x)= ,而 h(t)满足条件 h(0)=3,h (t)=sin2(t ),则 fh(t) t=0=_13 设 y=22arccosx,则 dy=_14 当 x=1 时, f(x)=x3+3px+q 取到极值( 其中 q 为任意常数),则 p=_15 设函数 f(x)=x2pxq,有 (a,b)满足a,b上的拉格朗日中值定理,则=_16
4、 设 f(x)= 讨论 f(x)在 x=0 处的连续性和可导性17 设 y=excos 3xlnx ,求 y18 设 y=y(x)是由方程 2yx=(xy)ln(xy)确定的隐函数,求 dy19 设函数 y=f(x)由方程 xef(y)=ey 所确定,其中 f 具有二阶导数,且 f1,求 20 设函数 f(x)在 x=2 的某邻域内可导,且 f(x)=ef(x),f(2)=1,计算 f(n)(2)21 设函数 y=alnx+bx2+5x 在 x=1 处取极值且 x= 为其拐点横坐标,求 a,b 之值22 设 f(x)在a,b上二阶可导,且恒有 f(x)0,证明:若方程 f(x)=0 在(a,b
5、)内有根,则最多有两个根23 设函数 f(x)在a,b上连续,在(a,b) 内可导,且 f(a)=f(b)证明:若 f(x)不恒为常数,则至少 (a,b),有 f()024 求证方程 3x 一 1 一 0x dt=0 在区间(0 ,1)内有唯一根24 已知函数 f(x)在区间0,1上连续,在区间(0,1) 内可导,且 f(0)=0,f(1)=1,证明:25 存在 (0,1),使得 f()=1 一 ;26 存在两个不同的 , (0,1),使得 f()f()=127 证明对任意常数 ab ,都有 sinb 一 sinab 一 a28 一艘轮船甲以 20 海里小时的速度向东行驶,同一时间另一艘轮船乙
6、在其正北82 海里处以 16 海里小时的速度向南行驶,问经过多少时间后,两船相距最近?29 将长为 a 的铁丝切成两段,一段围成正方形,另一段围成圆形,问这两段铁丝各长多少时,正方形与圆形面积之和最小专升本高等数学一(一元函数微分学)模拟试卷 2 答案与解析一、选择题1 【正确答案】 A【试题解析】 由于 y=f(x)在点 x=1 处可导,则 y=f(x)在点 x=1 处必连续,所以有f(1)= =2【知识模块】 一元函数微分学2 【正确答案】 B【试题解析】 按照微分定义,在 x=x0 处,dy=f (x0)x= x,当x0 时,dy与x 为同阶无穷小,故选 B【知识模块】 一元函数微分学3
7、 【正确答案】 A【试题解析】 因为 y=3x+1,故 y=3,y =0【知识模块】 一元函数微分学4 【正确答案】 D【试题解析】 f (sin2x)=cos2x=1sin 2x,令 =sin2x,故 f()=1一 ,所以 f()=一 2+C,由 f(0)=0,得 C=0,所以 f(x)=x x2【知识模块】 一元函数微分学5 【正确答案】 A【试题解析】 令 t=ex,则 x=lnt,代入原函数得 f(t)= (ln 2t)= ,故选 A【知识模块】 一元函数微分学6 【正确答案】 B【试题解析】 因 y=x4 一 4x3,于是 y=4x3 一 12x2,y =12x2 一 24x=12x
8、(x 一 2),令y=0,得 x=0,x=2;具有下表: 由表知,函数曲线有两个拐点为 (0,0),(2,一 16)【知识模块】 一元函数微分学7 【正确答案】 A【试题解析】 因 f(x)=(1+x)ex,且处处可导,于是,f (x)=ex+(1+x)e x=(x2)e x,令 f(x)=0 得驻点 x=一 2;又 x一 2 时,f (x)0; x2 时,f (x)0;从而 f(x)在 x=一 2 处取得极小值,且 f(x)只有一个极值【知识模块】 一元函数微分学8 【正确答案】 D【试题解析】 (1)f(x)=(1 一 x2)3 和 g(x)= 都在 x=0 处取得极大值,但 f(x)g(
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 试卷 高等数学 一元函数 微分学 模拟 答案 解析 DOC
