[考研类试卷]考研数学三(线性代数)模拟试卷55及答案与解析.doc
《[考研类试卷]考研数学三(线性代数)模拟试卷55及答案与解析.doc》由会员分享,可在线阅读,更多相关《[考研类试卷]考研数学三(线性代数)模拟试卷55及答案与解析.doc(14页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)模拟试卷 55 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 若 1, 2, 3 线性相关, 2, 3, 4 线性无关,则( )(A) 1 可由 2, 3 线性表示(B) 4 可由 1, 2, 3 线性表示(C) 4 可由 1, 3 线性表示(D) 4 可由 1, 2 线性表示2 设向量组 1, 2, 3, 4 线性无关,则向量组( ) (A) 1+2, 2+3, 3+4, 4+1 线性无关(B) 1 一 2, 2 一 3, 3 一 4, 4 一 1 线性无关(C) 1+2, 2+3, 3+4, 4 一 1 线性无关(D) 1+2, 2+3
2、, 3 一 4, 4 一 1 线性无关3 向量组 1, 2, m 线性无关的充分必要条件是 ( )(A)向量组 1, 2, , m, 线性无关(B)存在一组不全为零的常数 k1,k 2,k m,使得 k11+k22+kmm0(C)向量组 1, 2, m 的维数大于其个数(D)向量组 1, 2, , m 的任意一个部分向量组线性无关4 设向量组 1, 2, m 线性无关, 1 可由 1, 2, m 线性表示,但 2 不可由 1, 2, , m 线性表示,则( )(A) 1, 2, m 一 1, 1 线性相关(B) 1, 2, m 一 1, 1, 2 线性相关(C) 1, 2, m, 1+2 线性
3、相关(D) 1, 2, m, 1+2 线性无关5 设 n 维列向量组 1, 2, m(mn)线性无关,则 n 维列向量组1, 2, m 线性无关的充分必要条件是( )(A)向量组 1, 2, , m 可由向量组 1, 2, , m 线性表示(B)向量组 1, 2, m 可由向量组 1, 2, m 线性表示(C)向量组 1, 2, m 与向量组 1, 2, m 等价(D)矩阵 A=(1, 2, m)与矩阵 B=(1, 2, m)等价6 设 1, 2, 3 线性无关, 1 可由 1, 2, 3 线性表示, 2 不可由 1, 2, 3 线性表示,对任意的常数 k 有( )(A) 1, 2, 3,k
4、1+2 线性无关(B) 1, 2, 3,k m+2 线性相关(C) 1, 2, 3, 1+k2 线性无关(D) 1, 2, 3, 1+k2 线性相关7 设 n 阶矩阵 A=(1, 2, n),B=( 1, 2, n),AB=( 1, 2, n),记向量组 () : 1, 2, n; (): 1, 2, n; (): 1, 2, n,若向量组() 线性相关,则 ( )(A)() , ()都线性相关(B) ()线性相关(C) ()线性相关(D)() , ()至少有一个线性相关8 设向量组() : 1, 2, , s 的秩为 r1,向量组(): 1, 2, s 的秩为 r2,且向量组()可由向量组(
5、 ) 线性表示,则( )(A) 1+1, 2+2, s+s 的秩为 r1+r2(B)向量组 1 一 1, 2 一 2, s 一 s 的秩为 r1 一 r2(C)向量组 1, s, 1, 2, s 的秩为 r1+r2(D)向量组 1, s, 1, 2, s 的秩为 r19 向量组 1, s 线性无关的充要条件是( )(A) 1, s 都不是零向量(B) 1, s 中任意两个向量不成比例(C) 1, s 中任一向量都不可由其余向量线性表示(D) 1, s 中有一个部分向量组线性无关10 设 A 为 n 阶矩阵,且|A|=0,则 A( )(A)必有一列元素全为零(B)必有两行元素对应成比例(C)必有
6、一列是其余列向量的线性组合(D)任一列都是其余列向量的线性组合11 设 则 A 与 B( )(A)合同且相似(B)相似但不合同(C)合同但不相似(D)既不相似又不合同二、填空题12 设 1= 2= 3= 线性相关,则 a=_13 设向量组 1, 2, 3 线性无关,且 1+a2+43, 21+2 一 3, 2+3 线性相关,则 a=_14 设 ,且 , 两两正交,则a=_,b=_15 设 A=(1, 2, 3, 4)为 4 阶方阵,且 AX=0 的通解为 X=k(1,1,2,一 3)T,则 2 由 1, 3, 4 表示的表达式为 _三、解答题解答应写出文字说明、证明过程或演算步骤。15 设 A
7、,B 为 n 阶矩阵,16 求 PQ;17 证明:当 P 可逆时,Q 也可逆18 设 A 为 n 阶可逆矩阵,A 2=|A|E证明:A=A *19 设 A 为 N 阶矩阵,且 A22A 一 8E=0证明:r(4E 一 A)+r(2E+A)=n20 证明:若矩阵 A 可逆,则其逆矩阵必然唯一21 设 A 是 mn 阶矩阵,若 ATA=0,证明:A=0 22 设向量组 1, 2, 3 线性无关,证明: 1+2+3, 1+22+33, 1+42+93 线性无关23 设 1, m, 为 m+1 维向量,= 1+ m(m1)证明:若 1, m 线性无关,则 一 1, m 线性无关24 设 1, 2, ,
8、 n(n2)线性无关,证明:当且仅当 n 为奇数时,1+2, 2+3, n+ 1 线性无关25 设 1, n 为 n 个 m 维向量,且 mn,证明: 1, n 线性相关26 证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关27 n 维列向量组 1, n 一 1 线性无关,且与非零向量 正交,证明:1, , n 一 1, 线性无关28 设向量组 1, n 为两两正交的非零向量组,证明: 1, n 线性无关,举例说明逆命题不成立29 设 A 为 nm 矩阵,B 为 mn 矩阵(mn),且 AB=E证明:B 的列向量组线性无关30 设 1, 2, , m, 1, 2, n 线性
9、无关,而向量组 1, 2, m, 线性相关证明:向量 可由向量组 1, 2, m, 1, 2, n 线性表示考研数学三(线性代数)模拟试卷 55 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 A【试题解析】 因为 2, 3, 4 线性无关,所以 2, 3 线性无关,又因为1, 2, 3 线性相关,所以 1 可由 2, 3 线性表示,选(A)【知识模块】 线性代数2 【正确答案】 C【试题解析】 因为一( 1+2)+(2+3)一( 3+4)+(4+1)=0, 所以1+2, 2+3, 3+4, 4+1 线性相关; 因为( 1 一 2)+(2 一 3)+(
10、3 一 4)+(4 一1)=0, 所以 1 一 2, 2 一 3, 3 一 4, 4 一 1 线性相关; 因为( 1+2)一(2+3)+(3 一 4)+(4 一 1)=0, 所以 1+2, 2+3, 3 一 4, 4 一 1 线性相关,容易通过证明向量组线性无关的定义法得 1+2, 2+3, 3+4, 4 一 1 线性无关,选(C)【知识模块】 线性代数3 【正确答案】 D【试题解析】 (A) 不对,因为 1, m, 线性无关可以保证 1, m 线性无关,但1, 2, m 线性无关不能保证 1, 2, m, 线性无关;(B)不对,因为 1, 2, m 线性无关可以保证对任意一组非零常数 k1,
11、k 2,k m,有k11+k22+kmm0,但存在一组不全为零的常数 k1,k 2,k m 使得k11+k22+kmm0不能保证 1, 2, m 线性无关; (C)不对,向量组1, 2, m 线性无关不能得到其维数大于其个数,如 1= , 2= 线性无关,但其维数等于其个数,选(D)【知识模块】 线性代数4 【正确答案】 D【试题解析】 (A) 不对,因为 1 可由向量组 1, 2, m 线性表示,但不一定能被 1, 2, m 一 1 线性表示,所以 1, 2, m 一 1, 1 不一定线性相关;(B)不对,因为 1, 2, m 一 1, 1 不一定线性相关, 2 不一定可由1, 2, m 一
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 55 答案 解析 DOC
