[考研类试卷]考研数学一(线性代数)模拟试卷40及答案与解析.doc
《[考研类试卷]考研数学一(线性代数)模拟试卷40及答案与解析.doc》由会员分享,可在线阅读,更多相关《[考研类试卷]考研数学一(线性代数)模拟试卷40及答案与解析.doc(14页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学一(线性代数)模拟试卷 40 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 若 1, 2, 3 线性相关, 2, 3, 4 线性无关,则( )(A) 1 可由 2, 3 线性表示(B) 4 可由 1, 2, 3 线性表示(C) 4 可由 1, 3 线性表示(D) 4 可由 1, 2 线性表示2 设向量组 1, 2, 3, 4 线性无关,则向量组( ) (A) 1+2, 2+3, 3+1, 4+1 线性无关(B) 12, 23, 3+4, 41 线性无关(C) 1+2, 2+3, 3+4, 41 线性无关(D) 1+2, 2+3, 34, 41 线性无关3
2、 向量组 1, 2, m 线性无关的充分必要条件是 ( )(A)向量组 1, 2, , m, 线性无关(B)存在一组不全为零的常数 k1,k 2,k m,使得 k11+k22+kmm0(C)向量组 1, 2, m 的维数大于其个数(D)向量组 1, 2, , m 的任意一个部分向量组线性无关 4 设向量组 1, 2, m 线性无关, 1 可由 1, 2, m 线性表示,但 2 不可由 1, 2, , m 线性表示,则( )(A) 1, 2, m1, 1 线性相关(B) 1, 2, m1, 1, 2 线性相关(C) 1, 2, m, 1+2 线性相关(D) 1, 2, m, 1+2 线性无关5
3、设 n 维列向量组 1, 2, m(mn)线性无关,则 n 维列向量组1, 2, m 线性无关的充分必要条件是( )(A)向量组 1, 2, , m 可由向量组 1, 2, , m 线性表示(B)向量组 1, 2, m 可由向量组 1, 2, m 线性表示(C)向量组 1, 2, m 与向量组 1, 2, m 等价(D)矩阵 A=(1, 2, m)与矩阵 B=(1, 2, m)等价6 设 1, 2, 3 线性无关, 1 可由 1, 2, 3 线性表示, 2 不可由 1, 2, 3 线性表示,对任意的常数 k 有( )(A) 1, 2, 3,k 1+2 线性无关(B) 1, 2, 3,k 1+2
4、 线性相关(C) 1, 2, 3, 1+k2 线性无关(D) 1, 2, 3, 1+k2 线性相关7 设 n 阶矩阵 A=(1, 2, n),B=( 1, 2, n),AB=( 1, 2, n),记向量组(I): 1, 2, n;(): 1, 2, n;(): 1, 2, s,若向量组()线性相关,则 ( )(A)(I),(II)都线性相关(B) (I)线性相关(C) (II)线性相关(D)(I),( )至少有一个线性相关8 设向量组(I): 1, 2, s 的秩为 r1,向量组(II): 1, 2, n 的秩为 r2,且向量组(II)可由向量组(I)线性表示,则( )(A) 1+1, 2+2
5、, s+s 的秩为 r1+r2(B)向量组 1 一 1, 2 一 2, s 一 s 的秩为 r1 一 r2(C)向量组 1, 2, s, 1, 2, s 的秩为 r1+r2(D)向量组 1, 2, , s, 1, 2, s 的秩为 r19 向量组 1, 2, s 线性无关的充要条件是( )(A) 1, 2, s 都不是零向量(B) 1, 2, s 中任意两个向量不成比例(C) 1, 2, s 中任一向量都不可由其余向量线性表示(D) 1, 2, s 中有一个部分向量组线性无关10 设 A 为 n 阶矩阵,且|A|=0,则 A( )(A)必有一列元素全为零(B)必有两行元素对应成比例(C)必有一
6、列是其余列向量的线性组合(D)任一列都是其余列向量的线性组合二、填空题11 设 A=(1, 2, 3, 4)为 4 阶方阵,且 AX=0 的通解为 X=k(1,1,2,一 3)T,则 2 由 1, 3, 4 表示的表达式为 _12 设向量组 1, 2, 3 线性无关,且 1+a2+43, 21+2 一 3, 2+3 线性相关,则 a=_13 设 = ,且 , , 两两正交,则a=_,b=_14 设 = 为三维空间的两组基,则从基 1, 2, 3 到基 e1,e 2,e 3 的过渡矩阵为_三、解答题解答应写出文字说明、证明过程或演算步骤。15 设向量组 1, 2, 3 线性无关,证明: 1+2+
7、3, 1+22+33, 1+42+93 线性无关16 设 1, m, 为 m+1 维向量,= 1+ m(m1)证明:若 1, m 线性无关,则 一 1, m 线性无关17 设 1, 2, , n(n2)线性无关,证明:当且仅当 n 为奇数时,1+2, 2+3, n+1 线性无关18 设 A 为 n 阶矩阵, 1, 2, 3 为 n 维列向量,其中 10,且A1=1,A 1=1+2,A 3=2+3,证明: 1, 2, 3 线性无关19 证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关20 n 维列向量组 1, n1 线性无关,且与非零向量 正交证明:1, , n1, 线性无关
8、21 设向量组 1, n 为两两正交的非零向量组,证明: 1, n 线性无关,举例说明逆命题不成立22 设 A 为 nm 矩阵,B 为 mn 矩阵(mn),且 AB=E证明:B 的列向量组线性无关23 设 1, 2, , m, 1, 2, n 线性无关,而向量组 1, 2, m, 线性相关证明:向量 可由向量组 1, 2, m, 1, 2, n 线性表示24 设向量组 1= 线性相关,但任意两个向量线性无关,求参数 t25 设 1, 2, , n 为 n 个线性无关的 n 维列向量,且与向量 正交证明:向量 为零向量26 设三维向量空间的两组基 1=,向量 在基 1, 2, 3 下的坐标为 ,
9、求 在基 1, 2, 3 下的坐标27 设三维向量空间 R 中的向量 在基 1=(1,2,1) T, 2=(0,1,1)T, 3=(3,2,1) T 下的坐标为(x 1,x 2,x 3)T,在基 1, 2, 3 下的坐标为(y1,y 2,y 3)T,且 y1=x1 一 x2 一 x3,y 2=一 x1+x2, y3=x1+2x3,求从基 1, 2, 3 到基 1, 2, 3 的过渡矩阵考研数学一(线性代数)模拟试卷 40 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 A【试题解析】 因为 2, 3, 4 线性无关,所以 2, 3 线性无关,又因为1,
10、 2, 3 线性相关,所以 1 可由 2, 3 线性毒示,选(A)【知识模块】 线性代数2 【正确答案】 C【试题解析】 因为一( 1+2)+(2+3)(3+4)+(4+1)=0, 所以1+2, 2+3, 3+4, 4+1 线性相关; 因为( 12)+(23)+(34)+(41)=0, 所以 12, 23, 34, 41 线性相关; 因为( 1+2)(2+3)(34)+(41)=0, 所以 1+2, 2+3, 34, 41 线性相关,容易通过证明向量组线性无关的定义法得 1+2, 2+3, 3+4, 41 线性无关,选(C)【知识模块】 线性代数3 【正确答案】 D【试题解析】 (A) 不对,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 40 答案 解析 DOC
