NASA NACA-RM-A55K09-1956 Force moment and pressure-distribution characteristics of rectangular wings at high angles of attack and supersonic speeds《在高攻角和超音速时矩形机翼的力 力矩和压力分布特性》.pdf
《NASA NACA-RM-A55K09-1956 Force moment and pressure-distribution characteristics of rectangular wings at high angles of attack and supersonic speeds《在高攻角和超音速时矩形机翼的力 力矩和压力分布特性》.pdf》由会员分享,可在线阅读,更多相关《NASA NACA-RM-A55K09-1956 Force moment and pressure-distribution characteristics of rectangular wings at high angles of attack and supersonic speeds《在高攻角和超音速时矩形机翼的力 力矩和压力分布特性》.pdf(50页珍藏版)》请在麦多课文档分享上搜索。
1、WUJ.RM A55K09-.RESEARCH MEMORANDUM-2$ -l:tkA,ktiliiiA i)/jy) T)b.-DA7t!“”Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECHLIBRARYKAFB.NMivNACA R4 A55K09NATIONAL ADVISORY COMMITTEE FORRESEARCH MEMORANDUMIlllllllllillllllllllllllllljlllltlli335iAERO
2、NAUTICSFORCE, MOMENT, AND PKESSURE-DISTRIBUTIONCHARACTERISTICSOF RECTANGULAR WINGS AT HIGH ANGLES OF ATTACKAND SUPERSONICSPEEDSBy Williem C. PittsSJMMARYExperimental force and mcment data are presented for rectangularwings of aspect ratios 1, 2, and 3. The angle-of-attack range is aboutThe No. 2 tun
3、nel is an intermittent-operation,nonreturn, variable-pressurewind tunnel that has a Mach number rangefrom 1.2 to 4.0. In both tunnels the Mach number is changed by varyingthe contour of flexible plates which comprise the top and bottom wallsof the tunnels. The No. 1 tunnel was used to obtain.the e m
4、easurements were made on the pressure-distributionwing for :) (3.20).43 0.33 0.40 0.44(.35) ( .45) (*47)2.12 .45 .451.* :)( .47) (:)1.96 ;:j;) (:$ (2*14)2“43 (%) (i%) (;:% 2.43 (:;)( .49) ( “49)3.36 ;:;, (;:;) (%)(Qdn1 2 31.45 0.016 0.018 0.0201.96 .012 .014 a71 0152.43 .010 .011 .0123.36 .007 .007
5、.008I (L/D)M I2 31.45 4.9 6.2 6.1L*96 597 5.7 5.82.43 5.8 5.8 5.83.36 6.4 I 6.7 5.7The numbers in the parenthesis are linear-theory values. The trends in.c%) with and A are we redicted by linear theory, but theProvided by IHSNot for ResaleNo reproduction or networking permitted without license from
6、IHS-,-,-wNACA RM A55K09 9.predicted magnitudes of the lift-curve slope are somewhat low. Thecenter-of-pressureposition predtcted by linear theory is about 3 per-cent of the wing chord too far aft for all Mach numbers and aspectratios. This is primarily due to second-order effects of thickness.The ce
7、nter-of-pressuretravel with Mach number is primarily due to thewing-tip effect rather than section effects. This is apparent from thefact that the center-of-pressureposition for the aspect-ratio-3 wing,which approaches a two-dimensional airfoil, is nearly constant. Regard-ing (L/ll)mx, it 3s not sur
8、prisingthat no general trends occur sincethe drag due to the lift and Chin have opposite effects upon (L/D)Was Mach number and aspect ratio vary.CORRELATION AND DISCUSSIONBasic Physical PhenomenaBefore discussing the method used to correlate the rectangular-wing data, it is well to describe first so
9、me of the basic physicalphenomena of the flow over a-three-dimensional,rectangular wing. Asketch of an aspect-ratio-2 semispan wing is shown in figure 6. Theestimated Mach waves from the wing tip for and, two, the positionof the Mach wave is predicted incorrectly, as shown by the insert. An .obvious
10、 modification is to stretch the Busemann theory as shown by thedashed curve so that it agrees with two-dimensional,shock-expansiontheory at the correct Mach wave position. (This is essentially themethod used in ref. 12.) However, the experimentaldata are still notwell predicted. A linearized, conica
11、l-flow theory that considers theeffect of the wing vortices is presented in reference 13. However, thistheory is not in good agreement with the experimental results of thisinvestigation as shown by figure 9. In this figure the theoretical andexperimentalvalues of the local loading (both surfaces) ar
12、e normalizedby the two-dimensional section loading and plotted against the usualconical parameter J3q/x. For = O there are no vortices present and .thethetheory reduces tothat of Busemann. It is apparent that-the flow intip region is not conical from the fact that when plotted against the .Provided
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASANACARMA55K091956FORCEMOMENTANDPRESSUREDISTRIBUTIONCHARACTERISTICSOFRECTANGULARWINGSATHIGHANGLESOFATTACKANDSUPERSONICSPEEDS

链接地址:http://www.mydoc123.com/p-835998.html