DIN 3993-1-1981 Geometrical design of cylindrical internal involute gear pairs Basic rules《渐开线啮合圆柱内齿轮副的几何设计 基本规则》.pdf
《DIN 3993-1-1981 Geometrical design of cylindrical internal involute gear pairs Basic rules《渐开线啮合圆柱内齿轮副的几何设计 基本规则》.pdf》由会员分享,可在线阅读,更多相关《DIN 3993-1-1981 Geometrical design of cylindrical internal involute gear pairs Basic rules《渐开线啮合圆柱内齿轮副的几何设计 基本规则》.pdf(36页珍藏版)》请在麦多课文档分享上搜索。
1、DC 621.833.16 DEUTSCHE NORM Auciust 1981 Geometrical design of cylindrical internal involute gear pairs Basic rules I 3993 Part 1 Geometrische Auslegung von zylindrischen Innenradpaaren mit Evolventenverzahnung; Grundregeln As it is current practice in standards published by the International Organi
2、zation for Standardization (ISO), the comma has been used throughout as a decimal marker. The concepts, terms and symbols used in this standard agree with DIN 3960, DIN 3998 Part 1 and Part 2 and DIN 3999. Figures 5.1 to 5.24, 11.1 to 11.25 and 16.1 to 16.10 referred to in the text will be found in
3、DIN 3993 Part 2 to Part 4 (see also Explanations). The bearing capacity and running properties of cylindrical internal gear pairs may be improved by modifying the tooth geometry, .e. by altering the number of teeth, module and addendum modification. In addition, operation and tooth generation may gi
4、ve rise to meshing interference which can be counteracted by addendum modification and, if necessary, by tip relief. Con tents Page 1 General 2 1 ,I Symbols and terms 2 1.2 Signs . 2 1.3 Scope . 3 2 Other relevant standards. 3 3 Determination of addendum modifica- tion .:. . 3 3.1 General 3 3.1 .I C
5、onditions for operation 4 3.1.2 Conditions for generation. . 4 3.2 Aggregate of addendum modification coefficients . 4 3.2.1 V-O gear pairs. . 4 3.2.2 V-gear pairs. 4 3.2.3 Epicyclic gear transmissions and similarly constructed fixed-axis gear transmissions 5 Distribution of the aggregate of adden-
6、dum modification coefficients for internal gear pairs . 5 3.3.1 V-O gear pairs. . 5 3.3.2 V-gear pairs. 6 4 Meshing interference in operation, assembly, double flank composite action method of gear inspection and generation. . 7 4.1 Meshing interference of the gear pair . . 7 4.1.1 Meshing interfere
7、nce due to insufficient involute lengths 7 4.1.2 Tooth face tip butting of internal gear against pinion outside the meshing area. 8 4.1.3 Tooth face tip butting in the case of radial assembly 8 4.1.4 Meshing interference in the double flank composite action method of gear inspection. . 8 3.3 Page 4.
8、2 Meshing interference when cutting the internal gear with the pinion type cutter. 8 4.2.1 Insufficient involute lengths through generation, . 8 4.2.2 Active and passive meshing interference when cutting the internal gear with the pinion type cutter. 9 4.2.3 Cut-awav of the tooth face tips of the 4.
9、3 4.4 5 5.1 5.2 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 internai gear. 9 Meshing interference when cutting the internal gear by skiving . 10 Meshing interference when cutting the 10 internai gear by broaching . Determining the tool data for the internal gear. 10 Limits on number of pinion type cutter teet
10、h for the internal gear . Special features of the machine setting for cutting the internal gear. . Examples 12 10 11 05-V-O tooth system according to section 3.3.1.1 . 12 G type V-O tooth system according to section 3.3.1.2 . 13 G type V-tooth system according to section 3.3.2 14 Epicyclic gear tran
11、smission according to section 3.2.3.1 . 15 Epicyclic gear transmission according to section 3.2.3.2 . 16 Internal gear pair according to section 3.2.3.3 17 Enlarging the utilizable root circle of the internal gear. . 18 Determining the pinion type cutter to be used 18 Continued on pages 2 to 36 Expl
12、anations on page 36 Solesele rights of Germen Standards (DIN-Normen) are with Beuth Verlag GmbH. Berlin 30 DIN 3993 Part 1 Engl. Price group 1. 07.82 SalesNo.0117 Page 2 DIN 3993 Part 1 1 General 1 .I Symbols and terms The following symbols and terms are used: a ad a0 b C d da dNal(0) dNal (2) dNa2(
13、0) dNa2(1) dNfl (O) dNfl (2) dNf2(0) Nf2(1 1 e gcl ha haP0 haPl ha0 i inv m Pet r s U 22 u0 =- 20 X XO z 2, znw 20 B centre distance reference centre distance generating centre distance for the internal gear facewidth bottom clearance diameter tip diameter utilizable tip diameter generated by tool o
14、n pinion utilizable, .e. largest possible, pinion tip diameter assigned to the mating gear utilizable tip diameter generated by the tool on the internal gear utilizable, .e. smallest permissible, internal gear tip diameter assigned to the pinion tooth root utilizable root diameter generated by the t
15、ool on the pinion utilizable, .e. largest possible, pinion root diameter assigned to the mating gear utilizable root diameter generated by the tool on the internal gear utilizable, .e. smallest permissible, internal gear root diameter assigned to the pinion tooth tip spacewidth length of path of con
16、tact addendum addendum of tool basic rack addendum of pinion basic rack tool addendum coefficient transmission ratio involute function module transverse pitch on path of contact radius tooth thickness gear ratio generating gear ratio for the internal gear addendum modification coefficient addendum m
17、odification coefficient of a pinion type cutter number of teeth for addendum modification calculations virtual number of teeth virtual number of teeth for base tangent length calculations number of teeth of a pinion type cutter amount of envisaged reduction of number of teeth of planet gears to prom
18、ote suitable over- all addendum modification design of an epicyclic gear transmission K WO WO an at awn aw no awt Zwto b 4 means that a long addendum gear pair is involved, such that aad (but la1 lad). in contrast with external gear pairs the working transverse pressure angle a, a. Helix angle p2 :
19、The helix angles of the two intermesh- ing gears of a cylindrical gear pair have opposite signs, SO that the sum of the helix angles yields an axis intersec- tion angle of zero. Hence 2 = - l Consistent application of the sign rules to the above- mentioned quantities automatically also establishes t
20、he signs for all the other quantities. This does not result in an alteration of the sign for the pressure angle. On the other hand, for this reason the speed equations for the internal gear yield negative values corresponding to the speed vector which is reversed in direction compared with an extern
21、al gear of like kind. Consequently all the geo- metrical equations relating to the cylindrical gear and the mating of cylindrical gears with an external tooth sys- tem also apply unchanged to the internal gear and to internal gear pairs. For data on drawings, however, it is the rule that, with the e
22、xception of the addendum modification coeffi- cients, the absolute values of the above data must be used, see DIN 3966 Part 1. Similarly, the data for the upper and lower deviation are referred to the absolute values in the accustomed manner. For further information concerning the geometrical rela-
23、tionships of internal gear pairs, see DIN 3960. 1.3 Scope This standard applies to straight and helical internal gear pairs having standard basic rack tooth profile according to DIN 867, number of pinion teeth z1 h (10) 14, (bracketed value is lowest extreme), number of teeth of internal gear z2 d (
24、- 23) - 40, hence 1.1 I(23) 40 1, total number of teeth d - 1 (absolutely: difference in number of teeth 1.1- z, L 11, aggregate addendum modification + 0,5 (for restrictions and extensions see figures 5.1 to 5.24), helix angle Dl 5 30, standard basic rack tooth profi!e of tool II according x = - 1,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DIN399311981GEOMETRICALDESIGNOFCYLINDRICALINTERNALINVOLUTEGEARPAIRSBASICRULES 渐开线 啮合 圆柱 齿轮 几何 设计 基本 规则

链接地址:http://www.mydoc123.com/p-656607.html