ASTM E854-2003(2009) 346 Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance E706(IIIB)《反应堆监测用固态径迹记录仪(SSTR)监视器的.pdf
《ASTM E854-2003(2009) 346 Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance E706(IIIB)《反应堆监测用固态径迹记录仪(SSTR)监视器的.pdf》由会员分享,可在线阅读,更多相关《ASTM E854-2003(2009) 346 Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance E706(IIIB)《反应堆监测用固态径迹记录仪(SSTR)监视器的.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E 854 03 (Reapproved 2009)Standard Test Method forApplication and Analysis of Solid State Track Recorder(SSTR) Monitors for Reactor Surveillance, E706(IIIB)1This standard is issued under the fixed designation E 854; the number immediately following the designation indicates the year ofo
2、riginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method describes the use of solid-state trackrecor
3、ders (SSTRs) for neutron dosimetry in light-water reactor(LWR) applications. These applications extend from lowneutron fluence to high neutron fluence, including high powerpressure vessel surveillance and test reactor irradiations as wellas low power benchmark field measurement. (1)2This testmethod
4、replaces Method E 418. This test method is moredetailed and special attention is given to the use of state-of-the-art manual and automated track counting methods to attainhigh absolute accuracies. In-situ dosimetry in actual highfluence-high temperature LWR applications is emphasized.1.2 This test m
5、ethod includes SSTR analysis by bothmanual and automated methods. To attain a desired accuracy,the track scanning method selected places limits on theallowable track density. Typically good results are obtained inthe range of 5 to 800 000 tracks/cm2and accurate results athigher track densities have
6、been demonstrated for some cases.(2) Track density and other factors place limits on the appli-cability of the SSTR method at high fluences. Special caremust be exerted when measuring neutron fluences (E1MeV)above 1016n/cm2. (3)1.3 High fluence limitations exist. These limitations arediscussed in de
7、tail in Section 13 and in references (3-5).1.4 SSTR observations provide time-integrated reactionrates. Therefore, SSTR are truly passive-fluence detectors.They provide permanent records of dosimetry experimentswithout the need for time-dependent corrections, such as decayfactors that arise with rad
8、iometric monitors.1.5 Since SSTR provide a spatial record of the time-integrated reaction rate at a microscopic level, they can be usedfor “fine-structure” measurements. For example, spatial distri-butions of isotopic fission rates can be obtained at very highresolution with SSTR.1.6 This standard d
9、oes not purport to address the safetyproblems associated with its use. It is the responsibility of theuser of this standard to establish appropriate safety and healthpractices and determine the applicability of regulatory limita-tions prior to use.2. Referenced Documents2.1 ASTM Standards:3E 418 Met
10、hod for Fast-Neutron Flux Measurements byTrack-Etch Techniques4E 844 Guide for Sensor Set Design and Irradiation forReactor Surveillance, E 706(IIC)3. Summary of Test Method3.1 SSTR are usually placed in firm surface contact with afissionable nuclide that has been deposited on a pure nonfis-sionable
11、 metal substrate (backing). This typical SSTR geom-etry is depicted in Fig. 1. Neutron-induced fission produceslatent fission-fragment tracks in the SSTR. These tracks maybe developed by chemical etching to a size that is observablewith an optical microscope. Microphotographs of etched fis-sion trac
12、ks in mica, quartz glass, and natural quartz crystals canbe seen in Fig. 2.3.1.1 While the conventional SSTR geometry depicted inFig. 1 is not mandatory, it does possess distinct advantages fordosimetry applications. In particular, it provides the highestefficiency and sensitivity while maintaining
13、a fixed and easilyreproducible geometry.3.1.2 The track density (that is, the number of tracks per unitarea) is proportional to the fission density (that is, the numberof fissions per unit area). The fission density is, in turn,proportional to the exposure fluence experienced by the SSTR.The existen
14、ce of nonuniformity in the fission deposit or thepresence of neutron flux gradients can produce non-uniformtrack density. Conversely, with fission deposits of provenuniformity, gradients of the neutron field can be investigatedwith very high spatial resolution.3.2 The total uncertainty of SSTR fissi
15、on rates is comprisedof two independent sources. These two error components arise1This test method is under the jurisdiction ofASTM Committee E10 on NuclearTechnology and Applications and is the direct responsibility of SubcommitteeE10.05 on Nuclear Radiation Metrology.Current edition approved June
16、1, 2009. Published June 2009. Originallyapproved in 1981. Last previous edition approved in 2003 as E 854 03.2The boldface numbers in parentheses refer to the list of references appended tothis test method.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer
17、Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4Withdrawn. The last approved version of this historical standard is referencedon www.astm.org1Copyright ASTM International, 100 Barr Harbor Drive, PO Box
18、C700, West Conshohocken, PA 19428-2959, United States.from track counting uncertainties and fission-deposit massuncertainties. For work at the highest accuracy levels, fission-deposit mass assay should be performed both before and afterthe SSTR irradiation. In this way, it can be ascertained that no
19、significant removal of fission deposit material arose in thecourse of the experiment.4. Significance and Use4.1 The SSTR method provides for the measurement ofabsolute-fission density per unit mass. Absolute-neutron flu-ence can then be inferred from these SSTR-based absolutefission rate observation
20、s if an appropriate neutron spectrumaverage fission cross section is known. This method is highlydiscriminatory against other components of the in-core radia-tion field. Gamma rays, beta rays, and other lightly ionizingparticles do not produce observable tracks in appropriate LWRSSTR candidate mater
21、ials. However, photofission can contrib-ute to the observed fission track density and should therefore beaccounted for when nonnegligible. For a more detailed discus-sion of photofission effects, see 13.4.4.2 In this test method, SSTR are placed in surface contactwith fissionable deposits and record
22、 neutron-induced fissionfragments. By variation of the surface mass density (g/cm2)ofthe fissionable deposit as well as employing the allowablerange of track densities (from roughly 1 event/cm2up to 105events/cm2for manual scanning), a range of total fluencesensitivity covering at least 16 orders of
23、 magnitude is possible,from roughly 102n/cm2up to 5 3 1018n/cm2. The allowablerange of fission track densities is broader than the track densityrange for high accuracy manual scanning work with opticalmicroscopy cited in 1.2. In particular, automated and semi-automated methods exist that broaden the
24、 customary trackdensity range available with manual optical microscopy. In thisbroader track density region, effects of reduced countingstatistics at very low track densities and track pile-up correc-tions at very high track densities can present inherent limita-tions for work of high accuracy. Auto
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME85420032009346STANDARDTESTMETHODFORAPPLICATIONANDANALYSISOFSOLIDSTATETRACKRECORDERSSTRMONITORSFORREACTORSURVEILLANCEE706IIIB

链接地址:http://www.mydoc123.com/p-533667.html