ASTM E3084-2017 Standard Practice for Characterizing Particle Irradiations of Materials in Terms of Non-Ionizing Energy Loss (NIEL)《通过非电离能量损失(NIEL)表征粒子辐照材料的标准实施规程》.pdf
《ASTM E3084-2017 Standard Practice for Characterizing Particle Irradiations of Materials in Terms of Non-Ionizing Energy Loss (NIEL)《通过非电离能量损失(NIEL)表征粒子辐照材料的标准实施规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM E3084-2017 Standard Practice for Characterizing Particle Irradiations of Materials in Terms of Non-Ionizing Energy Loss (NIEL)《通过非电离能量损失(NIEL)表征粒子辐照材料的标准实施规程》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E3084 17Standard Practice forCharacterizing Particle Irradiations of Materials in Terms ofNon-Ionizing Energy Loss (NIEL)1This standard is issued under the fixed designation E3084; the number immediately following the designation indicates the year oforiginal adoption or, in the case of
2、 revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice describes a procedure for characterizingparticle irradiations of materials in ter
3、ms of non-ionizingenergy loss (NIEL). NIEL is used in published literature tocharacterize both charged and neutral particle irradiations.1.2 Although the methods described in this practice apply toany particles and target materials for which displacement crosssections are known (see Practice E521),
4、this practice isintended for use in irradiations in which observed damageeffects may be correlated with atomic displacements. This istrue of some, but not all, radiation effects in electronic andphotonic materials.1.3 Procedures analogous to this one are used for calcula-tion of displacements per at
5、om (dpa) in charged particleirradiations (see Practice E521) or neutron irradiations (seePractice E693).1.4 Guidance on calculation of dpa from NIEL is provided.1.5 Procedures related to this one are used for calculation of1-MeV equivalent neutron fluence in electronic materials (seePractice E722),
6、but in that practice the concept of damageefficiency, based on correlation of observed damage effects, isincluded.1.6 Guidance on conversion of NIEL in silicon to monoen-ergetic neutron fluence in silicon (see Practice E722), and viceversa, is provided.1.7 The application of this standard requires k
7、nowledge ofthe particle fluence and energy distribution of particles whoseinteraction leads to displacement damage.1.8 The correlation of radiation effects data is beyond thescope of this standard. A comprehensive review (1)2ofdisplacement damage effects in silicon and their correlationwith NIEL pro
8、vides appropriate guidance that is applicable tosemiconductor materials and electronic devices.2. Referenced Documents2.1 ASTM Standards3E170 Terminology Relating to Radiation Measurements andDosimetryE521 Practice for Investigating the Effects of Neutron Ra-diation Damage Using Charged-Particle Irr
9、adiationE693 Practice for Characterizing Neutron Exposures in Ironand Low Alloy Steels in Terms of Displacements PerAtom (DPA), E 706(ID)E722 Practice for Characterizing Neutron Fluence Spectra inTerms of an Equivalent Monoenergetic Neutron Fluencefor Radiation-Hardness Testing of Electronics3. Term
10、inology3.1 Definitions of some terms used in this practice can befound in Terminology E170.3.2 Definitions:3.2.1 tracked particlesthose particles whose position-dependent fluence spectra are calculated in a particle transportcalculation for a specific target geometry.3.2.1.1 DiscussionIn calculating
11、 displacement damageenergy and NIEL, the tracked particles should includeneutrons, photons, protons and ions up to Z=2, unless theircontributions are known to be negligible. Heavier ions mayalso be tracked in some Monte Carlo codes. Except in the caseof neutrons, particles below a specified minimum
12、energy arenot tracked, and are treated as non-tracked particles.3.2.2 tracked-particle fluence spectrum, p(E)the fluencespectrum of particles, of species p and at particle energy E, thatare tracked in a particle transport calculation. For each speciesof tracked particle other than neutrons there is
13、a specifiedminimum energy. Particles at lower energy are non-trackedparticles.3.2.3 secondary particlesthose particles produced in amaterial by interaction with the tracked particles. Secondaryparticles may include tracked particles and non-tracked par-ticles.1This test method is under the jurisdict
14、ion of ASTM Committee E10 on NuclearTechnology and Applications and is the direct responsibility of SubcommitteeE10.07 on Radiation Dosimetry for Radiation Effects on Materials and Devices.Current edition approved Feb. 1, 2017. Published March 2017. DOI: 10.1520/D3084-17.2The boldface numbers in par
15、entheses refer to a list of references at the end ofthis standard.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM web
16、site.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of
17、International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.13.2.4 non-ionizing energy loss, NIELp(E)the quotient ofddby p(E).dE.dm, where p(E)dE is the tracked-particlefluence in the energy interval E to E+dE of particle spe
18、cies pin a volume element containing material of mass dm, and ddis that part of the mean energy imparted to matter by thetracked particle radiation which produces atomic displace-ments and lattice phonons (that is, excluding the part thatproduces ionization and excitations of electrons).NIELpE! 5 dd
19、 pE!dEdm (1)Unit: MeVm2kg-1. (also used are keVcm2g-1, andMeVcm2g-1)3.2.4.1 DiscussionFor silicon, using the atomic mass28.086 g/mol, a displacement kerma cross section 100MeVmbarn is equivalent to 2.144 MeVcm2/g (2). Micro-scopic displacement kerma cross sections (See Practice E722)having units wit
20、h dimensions equal to the product of energyand area (for example, MeVmbarn) are sometimes used, toapply to single target atoms, and may be thought of as themicroscopic version of NIEL. For 1-MeV neutrons the refer-ence value of the displacement damage function in silicon isdefined in Practice E722 a
21、s equal to 95 MeVmbarn, equivalentto a NIEL value of 2.037 MeVcm2/g (0.2037 Mevm2kg-1).3.2.4.2 DiscussionIn Eq 1, NIELp(E) is to be interpretedas a function dependent on the particle energy, on the speciesof particle, and on the material in which the particle fluence ispresent. Its use requires know
22、ledge of NIEL for all energiesand tracked-particle species that contribute significantly to thetotal displacement damage energy in a given material.3.2.4.3 DiscussionIn the definition, Eq 1, the volumeelement in which the tracked-particle fluence pis presentdoes not necessarily contain all of the at
23、omic displacementsproduced by the energy transferred, dd. The quantity iscalculated as if the extended volume, dependent on the particleenergy, in which displacements occur is homogeneous and ofthe same composition as the volume element in which thetracked-particle fluence is present. This assumptio
24、n is justifiedin cases in which secondary particle equilibrium applies for thenon-tracked particles: the number and energy distribution ofsecondary particles entering a volume element is the same asfor those leaving that element. See the analogous description of“charged particle equilibrium” in the
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME30842017STANDARDPRACTICEFORCHARACTERIZINGPARTICLEIRRADIATIONSOFMATERIALSINTERMSOFNONIONIZINGENERGYLOSSNIEL

链接地址:http://www.mydoc123.com/p-532327.html