ASTM E2856-2011 Standard Guide for Estimation of LNAPL Transmissivity.pdf
《ASTM E2856-2011 Standard Guide for Estimation of LNAPL Transmissivity.pdf》由会员分享,可在线阅读,更多相关《ASTM E2856-2011 Standard Guide for Estimation of LNAPL Transmissivity.pdf(66页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E2856 11Standard Guide forEstimation of LNAPL Transmissivity1This standard is issued under the fixed designation E2856; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses
2、 indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide provides field data collection and calculationmethodologies for the estimation of light non-aqueous phaseliquid (LNAPL) transmissivity in unconso
3、lidated porous sedi-ments. The methodologies presented herein may, or may notbe, applicable to other hydrogeologic regimes (for example,karst, fracture flow). LNAPL transmissivity represents thevolume of LNAPL (L3) through a unit width (L) of aquifer perunit time (t) per unit drawdown (L) with units
4、 of (L2/T).LNAPL transmissivity is a directly proportional metric forLNAPL recoverability whereas other metrics such as apparentLNAPL thickness gauged in wells do not exhibit a consistentrelationship to recoverability. The recoverability for a givengauged LNAPL thickness in a well will vary between
5、differentsoil types, LNAPL types or hydrogeologic conditions. LNAPLtransmissivity accounts for those parameters and conditions.LNAPL transmissivity values can be used in the following fiveways: (1) Estimate LNAPL recovery rate for multiple tech-nologies; (2) Identify trends in recoverability via map
6、ping; (3)Applied as a leading (startup) indicator for recovery; (4)Applied as a lagging (shutdown) indicator for LNAPL recov-ery; and (5) Applied as a robust calibration metric for multi-phase models (Hawthorne and Kirkman, 2011 (1)2and ITRC(2). The methodologies for LNAPL transmissivity estimationp
7、rovided in this document include short-term aquifer testingmethods (LNAPL baildown/slug testing and manual LNAPLskimming testing), and long-term methods (that is, LNAPLrecovery system performance analysis, and LNAPL tracertesting). The magnitude of transmissivity of any fluid in thesubsurface is con
8、trolled by the same variables (that is, fluidpore space saturation, soil permeability, fluid density, fluidviscosity, the interval that LNAPL flows over in the formationand the gravitational acceleration constant). A direct math-ematical relationship exists between the transmissivity of afluid and t
9、he discharge of that fluid for a given induceddrawdown. The methodologies are generally aimed at measur-ing the relationship of discharge versus drawdown for theoccurrence of LNAPL in a well, which can be used to estimatethe transmissivity of LNAPL in the formation. The focus,therefore, is to provid
10、e standard methodology on how to obtainaccurate measurements of these two parameters (that is,discharge and drawdown) for multi-phase occurrences toestimate LNAPL transmissivity.1.2 Organization of this Guide:1.2.1 Section 2 presents documents referenced.1.2.2 Section 3 presents terminology used.1.2
11、.3 Section 4 presents significance and use.1.2.4 Section 5 presents general information on four meth-ods for data collection related to LNAPL transmissivity calcu-lation. This section compares and contrasts the methods in away that will allow a user of this guide to assess which methodmost closely a
12、ligns with the site conditions and available datacollection opportunities.1.2.5 Sections 6 and 7 presents the test methods for each ofthe four data collection options. After reviewing Section 5 andselecting a test method, a user of this guide shall then proceedto the applicable portion of Sections 6
13、 and 7 which describesthe detailed test methodology for the selected method.1.2.6 Section 8 presents data evaluation methods. Afterreviewing Section 5 and the pertinent test method section(s) ofSections 6 and 7, the user of this guide shall then proceed to theapplicable portion(s) of Section 8 to un
14、derstand the method-ologies for evaluation of the data which will be collected. It ishighly recommended that the test methods and data evaluationprocedures be understood prior to initiating data collection.1.3 The values stated in inch-pound units are to be regardedas standard. The values given in p
15、arentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-p
16、riate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.5 This document is applicable to wells exhibiting LNAPLconsistently (that is, LNAPL transmissivity values above zero).This methodology does not substantiate zero LNAPL transmis-sivity; rather
17、the lack of detection of LNAPL within the well1This guide is under the jurisdiction ofASTM Committee E50 on EnvironmentalAssessment, Risk Management and Corrective Action and is the direct responsibil-ity of Subcommittee E50.04 on Corrective Action.Current edition approved Nov. 1, 2011. Published Ja
18、nuary 2012. DOI: 10.1520/E285611.2The boldface numbers in parentheses refer to the list of references at the end ofthis standard.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United Sbined with proper well development and purging proce-dures are
19、 required to confirm zero LNAPL transmissivity.1.6 This document cannot replace education or experienceand should be used in conjunction with professional compe-tence in the hydrogeology field and expertise in the behavior ofLNAPL in the subsurface.1.7 This document cannot be assumed to be a substit
20、ute foror replace any laws or regulations whether federal, state, tribalor local.2. Referenced Documents2.1 ASTM Standards:3D653 Terminology Relating to Soil, Rock, and ContainedFluidsD5088 Practice for Decontamination of Field EquipmentUsed at Waste SitesD5521 Guide for Development of Ground-Water
21、Monitor-ing Wells in Granular AquifersE2531 Guide for Development of Conceptual Site Modelsand Remediation Strategies for Light Nonaqueous-PhaseLiquids Released to the Subsurface3. Terminology3.1 Definitions:3.1.1 air/LNAPL interface (Zan)The surface shared by airand LNAPL in a control well. (L)3.1.
22、2 calculated water-table elevation (ZCGW)the theo-retical location of the air/water surface based on a densitycorrection if LNAPL were not present in a well. (L)3.1.3 confined LNAPLLNAPL trapped in an aquifer be-neath a layer that exhibits a pore entry pressure greater than thecapillary LNAPL head,
23、thereby impeding the upward migra-tion of LNAPL limits the upward movement of the LNAPL.The term confined LNAPL is used because the mobile LNAPLis under pressure greater than gauge pressure against theunderside of the LNAPL confining layer.3.1.4 dischargethe flow of a fluid into or out of a well.(L3
24、/t)3.1.5 drawdowna pressure differential in terms of fluidhead. (L)3.1.6 fluid levelthe level of a fluid interface (either air/oil,LNAPL/water, or potentiometric surface).3.1.7 formation thickness (bnf)the interval that LNAPLflows over in the formation. For unconfined conditions this isapproximately
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME28562011STANDARDGUIDEFORESTIMATIONOFLNAPLTRANSMISSIVITYPDF

链接地址:http://www.mydoc123.com/p-532005.html