ASTM E2617-2008 Standard Practice for Validation of Empirically Derived Multivariate Calibrations.pdf
《ASTM E2617-2008 Standard Practice for Validation of Empirically Derived Multivariate Calibrations.pdf》由会员分享,可在线阅读,更多相关《ASTM E2617-2008 Standard Practice for Validation of Empirically Derived Multivariate Calibrations.pdf(11页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E 2617 08Standard Practice forValidation of Empirically Derived Multivariate Calibrations1This standard is issued under the fixed designation E 2617; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last rev
2、ision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers requirements for the validation ofempirically derived calibrations (Note 1) such as calibrationsderived b
3、y Multiple Linear Regression (MLR), Principal Com-ponent Regression (PCR), Partial Least Squares (PLS), Artifi-cial Neural Networks (ANN), or any other empirical calibra-tion technique whereby a relationship is postulated between aset of variables measured for a given sample under test and oneor mor
4、e physical, chemical, quality, or membership propertiesapplicable to that sample.NOTE 1Empirically derived calibrations are sometimes referred to as“models” or “calibrations.” In the following text, for conciseness, the term“calibration” may be used instead of the full name of the procedure.1.2 This
5、 practice does not cover procedures for establishingsaid postulated relationship.1.3 This practice serves as an overview of techniques usedto verify the applicability of an empirically derived multivari-ate calibration to the measurement of a sample under test andto verify equivalence between the pr
6、operties calculated fromthe empirically derived multivariate calibration and the resultsof an accepted reference method of measurement to withincontrol limits established for the prespecified statistical confi-dence level.1.4 This standard does not purport to address all of thesafety concerns, if an
7、y, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E 131 Terminology Relating to Molecular Spectrosco
8、pyE 1655 Practices for Infrared Multivariate QuantitativeAnalysisE 1790 Practice for Near Infrared Qualitative Analysis3. Terminology3.1 For terminology related to molecular spectroscopicmethods, refer to Terminology E 131. For terminology relatedto multivariate quantitative modeling refer to Practi
9、ces E 1655.While Practices E 1655 is written in the context of multivariatespectroscopic methods, the terminology is also applicable toother multivariate technologies.3.2 Definitions of Terms Specific to This Standard:3.2.1 accuracythe closeness of agreement between a testresult and an accepted refe
10、rence value.3.2.2 biasthe arithmetic average difference between thereference values and the values produced by the analyticalmethod under test, for a set of samples.3.2.3 detection limitthe lowest level of a property in asample that can be detected, but not necessarily quantified, bythe measurement
11、system.3.2.4 estimatethe constituent concentration, identifica-tion, or other property of a sample as determined by theanalytical method being validated.3.2.5 initial validationvalidation that is performed whenan analyzer system is initially installed or after major mainte-nance.3.2.6 Negative Fract
12、ion Identifiedthe fraction of samplesnot having a particular characteristic that is identified as nothaving that characteristic.3.2.6.1 DiscussionNegative Fraction Identified assumesthat the characteristic that the test measures either is or is notpresent. It is not applicable to tests with multiple
13、 possibleoutcomes.3.2.7 ongoing periodic revalidationthe quality assuranceprocess by which, in the case of quantitative calibrations, thebias and precision or, in the case of qualitative calibrations, thePositive Fraction Identified and Negative Fraction Identifiedperformance determined during initi
14、al validation are shown tobe sustained.3.2.8 Positive Fraction Identifiedthe fraction of sampleshaving a particular characteristic that is identified as havingthat characteristic.3.2.8.1 DiscussionPositive Fraction Identified assumesthat the characteristic that the test measures either is or is notp
15、resent. It is not applicable to tests with multiple possibleoutcomes.1This practice is under the jurisdiction of ASTM Committee E13 on MolecularSpectroscopy and Separation Science and is the direct responsibility of Subcom-mittee E13.11 on Multivariate Analysis.Current edition approved May 15, 2008.
16、 Published June 2008.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr
17、Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.2.9 precisionthe closeness of agreement between inde-pendent test results obtained under stipulated conditions.3.2.9.1 DiscussionPrecision may be a measure of eitherthe degree of reproducibility or degree of repeatability o
18、f theanalytical method under normal operating conditions. In thiscontext, reproducibility refers to the use of the analyticalprocedure in different laboratories, as in a collaborative study.3.2.10 quantification limitthe lowest level of a sampleproperty which can be determined with acceptable precis
19、ionand accuracy under the stated experimental conditions.3.2.11 rangethe interval between the upper and lowerlevels of a property (including these levels) that has beendemonstrated to be determined with a suitable level of preci-sion and accuracy using the method as specified.3.2.12 reference valuet
20、he metric of a property as deter-mined by well-characterized method, the accuracy of whichhas been stated or defined, that is, another, already-validatedmethod.3.2.13 validationthe statistically quantified judgment thatan empirically derived multivariate calibration is applicable tothe measurement o
21、n which the calibration is to be applied andcan perform property estimates with, in the case of quantitativecalibrations, acceptable precision, accuracy and bias or, in thecase of qualitative calibrations, acceptable Positive FractionIdentified and Negative Fraction Identified, as compared withresul
22、ts from an accepted reference method.4. Summary of Practice4.1 Validating an empirically derived multivariate calibra-tion (model) consists of four major procedures: validation atinitial development, revalidation at initial deployment or aftera revision, ongoing periodic revalidation, and qualificat
23、ion ofeach measurement before using the calibration to estimate theproperty(s) of the sample being measured.5. Significance and Use5.1 This practice outlines a universally applicable procedureto validate the performance of a quantitative or qualitative,empirically derived, multivariate calibration r
24、elative to anaccepted reference method.5.2 This practice provides procedures for evaluating thecapability of a calibration to provide reliable estimationsrelative to an accepted reference method.5.3 This practice provides purchasers of a measurementsystem that incorporates an empirically derived mul
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME26172008STANDARDPRACTICEFORVALIDATIONOFEMPIRICALLYDERIVEDMULTIVARIATECALIBRATIONSPDF

链接地址:http://www.mydoc123.com/p-531553.html