ASTM E2527-2009 Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight《在自然光下集中陆地光电模块和系统的电气性能评级的标准试验方法》.pdf
《ASTM E2527-2009 Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight《在自然光下集中陆地光电模块和系统的电气性能评级的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM E2527-2009 Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight《在自然光下集中陆地光电模块和系统的电气性能评级的标准试验方法》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E 2527 09Standard Test Method forElectrical Performance of Concentrator TerrestrialPhotovoltaic Modules and Systems Under Natural Sunlight1This standard is issued under the fixed designation E 2527; the number immediately following the designation indicates the year oforiginal adoption
2、or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the elec-trical performance of p
3、hotovoltaic concentrator modules andsystems under natural sunlight using a normal incidencepyrheliometer.1.2 The test method is limited to module assemblies andsystems where the geometric concentration ratio specified bythe manufacturer is greater than 5.1.3 This test method applies to concentrators
4、 that usepassive cooling where the cell temperature is related to the airtemperature.1.4 Measurements under a variety of conditions are al-lowed; results are reported under a select set of concentratorreporting conditions to facilitate comparison of results.1.5 This test method applies only to conce
5、ntrator terrestrialmodules and systems.1.6 This test method assumes that the module or systemelectrical performance characteristics do not change during theperiod of test.1.7 The performance rating determined by this test methodapplies only at the period of the test, and implies no past orfuture per
6、formance level.1.8 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.
7、2. Referenced Documents2.1 ASTM Standards:2D 6176 Practice for Measuring Surface Atmospheric Tem-perature with Electrical Resistance Temperature SensorsE 772 Terminology Relating to Solar Energy ConversionE 816 Test Method for Calibration of Pyrheliometers byComparison to Reference PyrheliometersE 1
8、036 Test Methods for Electrical Performance of Non-concentrator Terrestrial Photovoltaic Modules and ArraysUsing Reference CellsE 1328 Terminology Relating to Photovoltaic Solar EnergyConversion2.2 IEEE Standard:IEEE 929-2000 Recommended Practice for Utility Interfaceof Photovoltaic (PV) Power Syste
9、ms3. Terminology3.1 DefinitionsDefinitions of terms used in this testmethod may be found in Terminology E 772, TerminologyE 1328, and IEEE Standard 929.3.2 Definitions of Terms Specific to This Standard:3.2.1 Concentrator Reporting Conditions, nthe ambienttemperature, wind speed, and direct normal s
10、olar irradiance towhich concentrator module or system performance data arecorrected3.2.2 system, na photovoltaic module or array connectedto an inverter.3.3 Symbols: The following symbols and units are used inthis test method:E = direct normal irradiance, Wm-2Eo= reporting direct normal irradiance o
11、f 850 Wm-2P = maximum power, WPo= maximum power at concentrator reporting conditions(Eo, To, and Vo), WTa= ambient temperature, CTo= reporting ambient temperature of 20Cv = wind speed, ms-1vo= reporting wind speed of 4 ms-11This test method is under the jurisdiction of ASTM Committee E44 on Solar,Ge
12、othermal and Other Alternative Energy Sources and is the direct responsibility ofSubcommittee E44.09 on Photovoltaic Electric Power Conversion.Current edition approved Jan. 15, 2009. Published February 2009. Originallyapproved in 2006. Last previous edition approved in 2006 as E 2527-06.2For referen
13、ced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West C
14、onshohocken, PA 19428-2959, United States.4. Summary of Test Method4.1 Determining the performance of a photovoltaic moduleor system under natural sunlight consists of measuring themaximum power over a range of irradiance and air tempera-ture.4.2 Amultiple linear regression is used to rate the maxim
15、umpower3at standard concentrator reporting conditions, definedas To= 20C, vo=4ms-1, Eo= 850 Wm-2.4.2.1 A direct normal irradiance of 850 Wm-2was selectedfrom a resource assessment study4that showed when the globalnormal solar irradiance is near the 1000 Wm-2used in ratingflat-plate photovoltaic modu
16、les, the direct normal irradiance isabout 850 Wm-2.4.3 The actual test data and the performance results are thenreported.5. Significance and Use5.1 It is the intent of this test method to provide a recog-nized procedure for testing and reporting the electrical perfor-mance of a photovoltaic concentr
17、ator module or system.5.2 If an inverter is used as part of the system, this testmethod can provide a dc or ac rating or both. The dc or acrating depends on whether the inverter input or output ismonitored.5.3 The test results may be used for comparison among agroup of modules or systems from a sing
18、le source. They alsomay be used to compare diverse designs, such as products fromdifferent manufacturers. Repeated measurements of the samemodule or system may be used for the study of changes indevice performance over a long period of time or as a result ofstress testing.5.4 The test method is limi
19、ted to modules and systemswhere the concentrated irradiance on the component cells isgreater than 5000 Wm-2at Eo. This limitation is necessarybecause the total irradiance is measured with a radiometer witha field of view less than 6 and because the correlation betweenthe direct irradiance and the po
20、wer produced decreases withincreasing concentrator field of view.5.5 This test method assumes that the regression equationaccurately predicts the concentrator performance as a functionof total irradiance with a fixed spectral irradiance, wind speed,and air temperature. The spectral distribution will
21、 be seasonaland site specific because of optical air mass, water vapor,aerosols, and other meteorological variables.6. Apparatus6.1 Test FixtureA platform that maintains an incidenceangle to the sun of less than 0.5. If the manufacturersspecifications require more accurate tracking than 0.5 inci-den
22、ce angle, the manufacturers specifications should be fol-lowed. Concentrator systems shall be tested as installed.6.2 Air Temperature Measurement EquipmentThe instru-ment or instruments used to measure the temperature of the airshall have a resolution of at least 0.1C, and shall have a totalerror of
23、 less than 61C of reading. The instrument sensorshould be between 1 and 10 m upwind from the geometricalcenter of the receiver and be mounted at least 2 m above theground. Further details on air temperature measurements canbe found in Practice D 6176.6.3 Irradiance Measurement EquipmentA secondary r
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME25272009STANDARDTESTMETHODFORELECTRICALPERFORMANCEOFCONCENTRATORTERRESTRIALPHOTOVOLTAICMODULESANDSYSTEMSUNDERNATURALSUNLIGHT

链接地址:http://www.mydoc123.com/p-531318.html