ASTM E1921-2010e1 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range《确定铁素体钢在转变范围内的基准温度的标准试验方法》.pdf
《ASTM E1921-2010e1 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range《确定铁素体钢在转变范围内的基准温度的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM E1921-2010e1 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range《确定铁素体钢在转变范围内的基准温度的标准试验方法》.pdf(22页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E1921 101Standard Test Method forDetermination of Reference Temperature, To, for FerriticSteels in the Transition Range1This standard is issued under the fixed designation E1921; the number immediately following the designation indicates the year oforiginal adoption or, in the case of r
2、evision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEq 4 was editorially corrected in August 2010.1. Scope1.1 This test method covers the determination of a
3、 referencetemperature, To, which characterizes the fracture toughness offerritic steels that experience onset of cleavage cracking atelastic, or elastic-plastic KJcinstabilities, or both. The specifictypes of ferritic steels (3.2.1) covered are those with yieldstrengths ranging from 275 to 825 MPa (
4、40 to 120 ksi) andweld metals, after stress-relief annealing, that have 10 % orless strength mismatch relative to that of the base metal.1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shapedcompact tension specimens, C(T) or DC(T). A range
5、 ofspecimen sizes with proportional dimensions is recommended.The dimension on which the proportionality is based isspecimen thickness.1.3 Median KJcvalues tend to vary with the specimen typeat a given test temperature, presumably due to constraintdifferences among the allowable test specimens in 1.
6、2. Thedegree of KJcvariability among specimen types is analyticallypredicted to be a function of the material flow properties (1)2and decreases with increasing strain hardening capacity for agiven yield strength material. This KJcdependency ultimatelyleads to discrepancies in calculated Tovalues as
7、a function ofspecimen type for the same material. Tovalues obtained fromC(T) specimens are expected to be higher than Tovaluesobtained from SE(B) specimens. Best estimate comparisons ofseveral materials indicate that the average difference betweenC(T) and SE(B)-derived Tovalues is approximately 10C
8、(2).C(T) and SE(B) Todifferences up to 15C have also beenrecorded (3). However, comparisons of individual, smalldatasets may not necessarily reveal this average trend. Datasetswhich contain both C(T) and SE(B) specimens may generateToresults which fall between the Tovalues calculated usingsolely C(T
9、) or SE(B) specimens. It is therefore stronglyrecommended that the specimen type be reported along withthe derived Tovalue in all reporting, analysis, and discussion ofresults. This recommended reporting is in addition to therequirements in 11.1.1.1.4 Requirements are set on specimen size and the nu
10、mberof replicate tests that are needed to establish acceptablecharacterization of KJcdata populations.1.5 Tois dependent on loading rate. Tois evaluated for aquasi-static loading rate range with 0.1 2MPa=m/s).1.6 The statistical effects of specimen size on KJcin thetransition range are treated using
11、 weakest-link theory (4)applied to a three-parameter Weibull distribution of fracturetoughness values. A limit on KJcvalues, relative to thespecimen size, is specified to ensure high constraint conditionsalong the crack front at fracture. For some materials, particu-larly those with low strain harde
12、ning, this limit may not besufficient to ensure that a single-parameter (KJc) adequatelydescribes the crack-front deformation state (5).1.7 Statistical methods are employed to predict the transi-tion toughness curve and specified tolerance bounds for 1Tspecimens of the material tested. The standard
13、deviation of thedata distribution is a function of Weibull slope and median KJc.The procedure for applying this information to the establish-ment of transition temperature shift determinations and theestablishment of tolerance limits is prescribed.1.8 The fracture toughness evaluation of nonuniform
14、mate-rial is not amenable to the statistical analysis methods em-ployed in this standard. Materials must have macroscopicallyuniform tensile and toughness properties. For example, multi-pass weldments can create heat-affected and brittle zones withlocalized properties that are quite different from e
15、ither the bulkmaterial or weld. Thick section steel also often exhibits somevariation in properties near the surfaces. Metallography andinitial screening may be necessary to verify the applicability ofthese and similarly graded materials. Particular notice should1This test method is under the jurisd
16、iction of ASTM Committee E08 on Fatigueand Fracture and is the direct responsibility of E08.07 on Fracture Mechanics.Current edition approved May 1, 2010. Published June 2010. Originallyapproved in 1997. Last previous edition approved in 2009 as E1921 09c2DOI:10.1520/E1921-10E012The boldface numbers
17、 in parentheses refer to the list of references at the end ofthis standard.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.be given to the 2% and 98% tolerance bounds on KJcpresentedin 9.3. Data falling outside these bounds may indic
18、ate nonuni-form material properties.1.9 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limi
19、tations prior to use.2. Referenced Documents2.1 ASTM Standards:3E4 Practices for Force Verification of Testing MachinesE8/E8M Test Methods for Tension Testing of MetallicMaterialsE23 Test Methods for Notched Bar Impact Testing ofMetallic MaterialsE74 Practice of Calibration of Force-Measuring Instru
20、-ments for Verifying the Force Indication of Testing Ma-chinesE208 Test Method for Conducting Drop-Weight Test toDetermine Nil-Ductility Transition Temperature of FerriticSteelsE399 Test Method for Linear-Elastic Plane-Strain FractureToughness KIcof Metallic MaterialsE436 Test Method for Drop-Weight
21、 Tear Tests of FerriticSteelsE561 Test Method for K-R Curve DeterminationE1820 Test Method for Measurement of Fracture Tough-nessE1823 Terminology Relating to Fatigue and Fracture Test-ing3. Terminology3.1 Terminology given in Terminology E1823 is applicableto this test method.3.2 Definitions:3.2.1
22、ferritic steelsare typically carbon, low-alloy, andhigher alloy grades. Typical microstructures are bainite, tem-pered bainite, tempered martensite, and ferrite and pearlite.Allferritic steels have body centered cubic crystal structures thatdisplay ductile-to-cleavage transition temperature fracture
23、toughness characteristics. See also Test Methods E23, E208and E436.NOTE 1This definition is not intended to imply that all of the manypossible types of ferritic steels have been verified as being amenable toanalysis by this test method.3.2.2 stress-intensity factor, KFL 3/2the magnitude ofthe mathem
24、atically ideal crack-tip stress field coefficient (stressfield singularity) for a particular mode of crack-tip regiondeformation in a homogeneous body.3.2.3 DiscussionIn this test method, Mode I is assumed.See Terminology E1823 for further discussion.3.2.4 J-integral, JFL1a mathematical expression;
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME19212010E1STANDARDTESTMETHODFORDETERMINATIONOFREFERENCETEMPERATURETOFORFERRITICSTEELSINTHETRANSITIONRANGE

链接地址:http://www.mydoc123.com/p-529808.html