ASTM E1256-1995(2007) Standard Test Methods for Radiation Thermometers (Single Waveband Type)《辐射式温度计的标准试验方法(单波段型)》.pdf
《ASTM E1256-1995(2007) Standard Test Methods for Radiation Thermometers (Single Waveband Type)《辐射式温度计的标准试验方法(单波段型)》.pdf》由会员分享,可在线阅读,更多相关《ASTM E1256-1995(2007) Standard Test Methods for Radiation Thermometers (Single Waveband Type)《辐射式温度计的标准试验方法(单波段型)》.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E 1256 95 (Reapproved 2007)Standard Test Methods forRadiation Thermometers (Single Waveband Type)1This standard is issued under the fixed designation E 1256; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of
2、last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 The test methods described in these test methods can beutilized to evaluate the following six basic operational param
3、-eters of a radiation thermometer (single waveband type):SectionCalibration Accuracy 7Repeatability 8Target Size 9Response Time 10Warm-Up Time 11Long-Term Drift 121.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the
4、user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Terminology2.1 Definitions:2.1.1 blackbody, nthe perfect or ideal source of thermalradiant power having a spectral distribution described by thePlanc
5、k equation.2.1.1.1 DiscussionThe term blackbody is often used todescribe a furnace or other source of radiant power whichapproximates the ideal.2.1.2 center wavelength, na wavelength, usually near themiddle of the band of radiant power over which a radiationthermometer responds, that is used to char
6、acterize its perfor-mance.2.1.2.1 DiscussionThe value of the center wavelength isusually specified by the manufacturer of the instrument.2.1.3 radiation thermometer, na radiometer calibrated toindicate the temperature of a blackbody.2.1.4 radiometer, na device for measuring radiant powerthat has an
7、output proportional to the intensity of the inputpower.2.1.5 target plane, nthe plane, perpendicular to the line ofsight of a radiation thermometer, that is in focus for thatinstrument.2.2 Definitions of Terms Specific to This Standard:2.2.1 reference temperature source, na source of thermalradiant
8、power of known temperature or emissivity, or both,used in the testing of radiation thermometers.2.2.2 target size, nthe diameter of a circle in the targetplane of a radiation thermometer that is centered on its line ofsight and contains 99 % of the input radiant power received bythat instrument.2.2.
9、3 temperature resolution, nthe minimum simulated oractual change in target temperature that gives a usable changein output or indication, or both.3. Significance and Use3.1 The purpose of these test methods is to establishconsensus test methods by which both manufacturers and endusers may make tests
10、 to establish the validity of the readings oftheir radiation thermometers. The test results can also serve asstandard performance criteria for instrument evaluation orselection, or both.3.2 The goal is to provide test methods that are reliable andcan be performed by a sufficiently skilled end user o
11、r manu-facturer in the hope that it will result in a better understandingof the operation of radiation thermometers and also promoteimproved communication between the manufacturers and theend users. A user without sufficient knowledge and experienceshould seek assistance from the equipment makers or
12、 otherexpert sources, such as those found at the National Institute ofStandards and Technology in Gaithersburg, Maryland.3.3 Use these test methods with the awareness that there areother parameters, particularly spectral response limits andtemperature resolution, which impact the use and characteriz
13、a-tion of radiation thermometers for which test methods have notyet been developed.3.3.1 Temperature resolution is the minimum simulated oractual change in target temperature that results in a usablechange in output or indication, or both. It is usually expressedas a temperature differential or a pe
14、rcent of full-scale value, orboth, and usually applies to value measured. The magnitude ofthe temperature resolution depends upon a combination of fourfactors: detector noise equivalent power (NEP) or noiseequivalent temperature, electronic signal processing, signal-to-noise characteristics (includi
15、ng amplification noise), andanalog-to-digital conversion “granularity.”1These test methods are under the jurisdiction of ASTM Committee E20 onTemperature Measurement and are the direct responsibility of Subcommittee E20.02on Radiation Thermometry.Current edition approved Nov. 1, 2007. Published Dece
16、mber 2007. Originallyapproved in 1988. Last previous edition approved in 2001 as E 1256 95 (2001).1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.Copyright by ASTM Intl (all rights reserved); Fri Jan 9 02:45:09 EST 2009Downloaded/pri
17、nted byGuo Dehua (CNIS) pursuant to License Agreement. No further reproductions authorized.3.3.2 Spectral response limits are the upper and lower limitsto the wavelength band of radiant energy to which theinstrument responds. These limits are generally expressed inmicrometers (m) and include the eff
18、ects of all elements in themeasuring optical path. At the spectral response limits, thetransmission of the measuring optics is 5 % of peak transmis-sion (see Fig. 1).4. Apparatus4.1 The following apparatus, set up as illustrated in Fig. 2,can be used to perform the standard tests for all six paramet
19、ers.4.1.1 Reference Temperature SourceA blackbody (orother stable isothermal radiant source of high and knownemissivity) with an opening diameter at least as large as thatspecified in these test methods.NOTE 1Typical examples include nearly isothermal furnaces withinternal geometries, such as a sphe
20、re with an opening small relative to itsradius, or a right circular cylinder with one end closed having a radiussmall relative to its length. Consult footnote2for greater detail.4.1.2 Temperature IndicatorEither contact or radiometric,which accurately displays the temperature of the referencetempera
21、ture source.4.1.3 Shutter MechanismOf sufficient size so as to com-pletely block the opening of the reference temperature sourcefrom the field of view of the test instrument. The shuttermechanism shall activate in a time interval that is short whencompared with the response time of the test instrume
22、nt.4.1.4 Iris DiaphragmOf sufficient size so that when fullyopen the iris diameter is greater than the opening of thereference temperature source. It shall be located with itsopening concentric with and perpendicular to the line of sightof the radiation thermometer.4.1.4.1 The side of the diaphragm
23、facing the radiationthermometer should be blackened (nearly nonreflective) so asto minimize the effect of radiation reflected from the surround-ing environment. In addition the iris should be shaded fromsources of intense extraneous radiation. (See Note 9).4.1.5 Aperture SetIf an iris diaphragm is n
24、ot available, anaperture disc set of appropriate diameters can be used. Eachaperture should be blackened and also mounted and protectedfrom extraneous sources of radiation as discussed in 4.1.4.1.4.1.6 Data Acquisition SystemsOf appropriate speed andstorage capacity to measure and record the output
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME125619952007STANDARDTESTMETHODSFORRADIATIONTHERMOMETERSSINGLEWAVEBANDTYPE 辐射 温度计 标准 试验 方法 波段 PDF

链接地址:http://www.mydoc123.com/p-528273.html