ASTM E1213-1997(2009) Standard Test Method for Minimum Resolvable Temperature Difference for Thermal Imaging Systems《热成像系统用可分辨的最小温度差的标准试验方法》.pdf
《ASTM E1213-1997(2009) Standard Test Method for Minimum Resolvable Temperature Difference for Thermal Imaging Systems《热成像系统用可分辨的最小温度差的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM E1213-1997(2009) Standard Test Method for Minimum Resolvable Temperature Difference for Thermal Imaging Systems《热成像系统用可分辨的最小温度差的标准试验方法》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E 1213 97 (Reapproved 2009)Standard Test Method forMinimum Resolvable Temperature Difference for ThermalImaging Systems1This standard is issued under the fixed designation E 1213; the number immediately following the designation indicates the year oforiginal adoption or, in the case of
2、revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the mini-mum resolvable temperature difference (MRT
3、D) capability ofthe compound observer-thermal imaging system as a functionof spatial frequency.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health pr
4、actices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E 1316 Terminology for Nondestructive Examinations3. Terminology3.1 Definitions:3.1.1 differential blackbodyan apparatus for establishingtwo parallel isothermal planar zones of
5、different temperatures,and with effective emissivities of 1.0.3.1.2 See also Terminology E 1316.4. Summary of Test Method4.1 A standard four-bar target is used in conjunction with adifferential blackbody that can establish one blackbody isother-mal temperature for the set of bars and another blackbo
6、dyisothermal temperature for the set of conjugate bars, which areformed by the regions between the bars (see Fig. 1). The targetis imaged onto the monochrome video monitor of a thermalimaging system where the image is viewed by an observer. Thetemperature difference between the bars and their conjug
7、ates,initially zero, is increased incrementally only until the observercan distinguish the four bars. This critical temperature differ-ence is the MRTD.4.2 The spatial distribution of temperature of each targetmust be measured remotely at the critical temperature differ-ence that determines the MRTD
8、. The mean temperature of eachbar must not differ from that of any other bar by more than themeasured MRTD. A similar requirement applies to the tem-perature of each conjugate bar. Otherwise the MRTD value isunacceptable.4.3 The background temperature and the spatial frequencyof each target must be
9、specified together with the measuredvalue of MRTD.4.4 The probability of resolution must be specified togetherwith the reported value of MRTD.5. Significance and Use5.1 This test relates to a thermal imaging systems effec-tiveness for discerning details in a scene.5.2 MRTD values provide estimates o
10、f resolution capabilityand may be used to compare one system with another. (LowerMRTD values indicate better resolution.)NOTE 1Test values obtained under idealized laboratory conditionsmay or may not correlate directly with service performance.6. Apparatus6.1 The apparatus consists of the following:
11、6.1.1 Test Charts (Targets), comprised of four periodic barsof aspect ratio (width:height) 1:7, as shown in Fig. 1.6.1.2 Differential Blackbody, temporally stable and control-lable to within 0.1C.6.1.3 Infrared Spot Radiometer, calibrated with the aid of ablackbody source to an accuracy within 0.1C.
12、NOTE 2Test charts may be fabricated by cutting slots in metal andcoating with black paint of emissivity greater than 0.95. In this case theslots would constitute the bars.7. Procedure7.1 Mount a test chart (target) onto the differential black-body.1This test method is under the jurisdiction of ASTM
13、Committee E07 onNondestructive Testing and is the direct responsibility of Subcommittee E07.10 onEmerging NDT Methods.Current edition approved March 1, 2009. Published March 2009. Originallyapproved in 1987. Last previous edition approved in 2002 as E 1213 - 97(2002).2For referenced ASTM standards,
14、visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 1942
15、8-2959, United States.NOTE 3Differential blackbodies may be used within an environmen-tal isothermal temperature chamber. Then, at equilibrium the temperatureof the conjugates approximately equals the temperature of the room, orambient temperature.7.2 Optimally focus the thermal imaging system direc
16、tly onthe target or on an optical projection of the target.7.3 Adjust the thermal imaging system for quasi-linearoperation.7.4 Adjust the monochrome video monitor controls so thatthe presence of noise is barely perceivable by the observer.7.5 Make the display luminance and the laboratory ambientlumi
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTME121319972009STANDARDTESTMETHODFORMINIMUMRESOLVABLETEMPERATUREDIFFERENCEFORTHERMALIMAGINGSYSTEMS

链接地址:http://www.mydoc123.com/p-528177.html