ASTM D7703-2016 red 2034 Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Lance Method《采用喷水枪法的暴露土工薄膜上电泄漏位置的标准实施规程》.pdf
《ASTM D7703-2016 red 2034 Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Lance Method《采用喷水枪法的暴露土工薄膜上电泄漏位置的标准实施规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM D7703-2016 red 2034 Standard Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Lance Method《采用喷水枪法的暴露土工薄膜上电泄漏位置的标准实施规程》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D7703 15D7703 16Standard Practice forElectrical Leak Location on Exposed Geomembranes Usingthe Water Lance Method1This standard is issued under the fixed designation D7703; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revisio
2、n, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice is a performance-based standard for an electrical method for locating leaks in exposed ge
3、omembranes. Forclarity, this practice uses the term “leak” to mean holes, punctures, tears, knife cuts, seam defects, cracks, and similar breaches inan installed geomembrane (as defined in 3.2.5).1.2 This practice can be used for geomembranes installed in basins, ponds, tanks, ore and waste pads, la
4、ndfill cells, landfill caps,canals, and other containment facilities. It is applicable for geomembranes made of materials such as polyethylene, polypropylene,polyvinyl chloride, chlorosulfonated polyethylene, bituminous geomembrane, and any other electrically insulating materials. Thispractice is be
5、st applicable for locating geomembrane leaks where the proper preparations have been made during the constructionof the facility.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address
6、 all of the safety concerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatorylimitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D4439 Terminology f
7、or GeosyntheticsD6747 Guide for Selection of Techniques for Electrical Leak Location of Leaks in GeomembranesD7002 Practice for Electrical Leak Location on Exposed Geomembranes Using the Water Puddle Method1 This practice is under the jurisdiction of ASTM Committee D35 on Geosynthetics and is the di
8、rect responsibility of Subcommittee D35.10 on Geomembranes.Current edition approved Jan. 1, 2015Jan. 1, 2016. Published February 2015January 2016. Originally approved in 2011. Last previous edition approved in 20112015 asD770311.-15. DOI: 10.1520/D770315.10.1520/D7703-16.2 For referencedASTM standar
9、ds, visit theASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.This document is not an ASTM standard and is intended only to provide the user of an ASTM
10、 standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published b
11、y ASTM is to be considered the official document.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1D7953 Practice for Electrical Leak Location on Exposed Geomembranes Using the Arc Testing Method3. Terminology3.1 Definitions:3.1.1 For g
12、eneral definitions used in this practice, refer to Terminology D4439.3.2 Definitions of Terms Specific to This Standard:3.2.1 artificial leak, nan electrical simulation of a leak in a geomembrane.3.2.2 conductive-backed geomembrane, na speciality geomembrane manufactured using coextrusion technology
13、 featuring aninsulating layer in intimate contact with a conductive layer.3.2.3 current, nthe flow of electricity or the flow of electric charge.3.2.4 electrical leak location, na method which uses electrical current or electrical potential to locate leaks in a geomembrane.3.2.5 leak, nfor the purpo
14、ses of this practice, a leak is any unintended opening, perforation, breach, slit, tear, puncture, crack,or seam breach. Significant amounts of liquids or solids may or may not flow through a leak. Scratches, gouges, dents, or otheraberrations that do not completely penetrate the geomembrane are not
15、 considered to be leaks. Type of leaks detected during surveysinclude, but are not limited to: burns, circular holes, linear cuts, seam defects, tears, punctures, and material defects.3.2.6 leak detection sensitivity, nthe smallest leak that the leak location equipment and survey methodology are cap
16、able ofdetecting under a given set of conditions. The leak detection sensitivity specification is usually stated as a diameter of the smallestleak that can likely be detected.3.2.7 poor contact condition, nfor the purposes of this practice, a poor contact condition means that a leak is not in intima
17、tecontact with the conductive layer above or underneath the geomembrane to be tested. This occurs on a wrinkle or wave, under theoverlap flap of a fusion weld, in an area of liner bridging and in an area where there is a subgrade depression or rut.3.2.8 probe, nfor the purposes of this practice, any
18、 conductive rod that is attached to a power source.3.2.9 water stream, nfor the purposes of this practice, a continuous stream of water between the water lance and thegeomembrane that creates a conduit for current to flow through any leaks.3.2.10 water lance, nfor the purposes of this practice, a pr
19、obe (lance) incorporating one or two electrodes that directs a solidstream of water through a single nozzle mounted at the end.4. Significance and Use4.1 Geomembranes are used as barriers to prevent liquids from leaking from landfills, ponds, and other containments. For thispurpose, it is desirable
20、that the geomembrane have as little leakage as practical.4.2 The liquids may contain contaminants that, if released, can cause damage to the environment. Leaking liquids can erode thesubgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from perfo
21、rming itsintended containment purpose.4.3 Geomembranes are often assembled in the field, either by unrolling and welding panels of the geomembrane materialtogether in the field, unfolding flexible geomembranes in the field, or a combination of both.4.4 Geomembrane leaks can be caused by poor quality
22、 of the subgrade, poor quality of the material placed on the geomembrane,accidents, poor workmanship, manufacturing defects, and carelessness.4.5 Electrical leak location methods are an effective and proven quality assurance measure to detect and locate leaks.5. Summary of Exposed Geomembrane Electr
23、ical Leak Location Methods5.1 Principles of the Electrical Leak Location Methods for Exposed Geomembranes:5.1.1 The principle of the electrical leak location methods is to place a voltage across a geomembrane and then locate areaswhere electrical current flows through leaks in the geomembrane.5.1.2
24、Currently available methods include the water puddle method (Practice D7002), the arc testing method (Practice D7953),and the water lance method.5.1.3 All of the methods listed in 5.1.2 are effective at locating leaks in exposed geomembranes. Each method has specific siteand labor requirements, surv
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD77032016RED2034STANDARDPRACTICEFORELECTRICALLEAKLOCATIONONEXPOSEDGEOMEMBRANESUSINGTHEWATERLANCEMETHOD

链接地址:http://www.mydoc123.com/p-526133.html