ASTM D7228-2006a(2011) 6250 Standard Test Method for Prediction of Asphalt-Bound Pavement Layer Temperatures《沥青结合路面层温度预测的标准试验方法》.pdf
《ASTM D7228-2006a(2011) 6250 Standard Test Method for Prediction of Asphalt-Bound Pavement Layer Temperatures《沥青结合路面层温度预测的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D7228-2006a(2011) 6250 Standard Test Method for Prediction of Asphalt-Bound Pavement Layer Temperatures《沥青结合路面层温度预测的标准试验方法》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D7228 06a (Reapproved 2011)Standard Test Method forPrediction of Asphalt-Bound Pavement Layer Temperatures1This standard is issued under the fixed designation D7228; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the
2、year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers a means of predicting tempera-tures within the asphalt-bound layer(s) of a flexible pa
3、vementsection.1.2 Deflection testing commonly involves the measurementof pavement surface temperatures. This standard is based ontemperature relationships developed as part of the FederalHighway Administration (FHWA) Long Term Pavement Per-formance (LTPP) Seasonal Monitoring Program.2. Referenced Do
4、cuments2.1 ASTM Standards:2D4694 Test Method for Deflections with a Falling-Weight-Type Impulse Load DeviceD4695 Guide for General Pavement Deflection Measure-mentsD4602 Guide for Nondestructive Testing of PavementsUsing Cyclic-Loading Dynamic Deflection EquipmentD5858 Guide for Calculating In Situ
5、Equivalent ElasticModuli of Pavement Materials Using Layered ElasticTheory2.2 AASHTO Standards:3T256-00 Standard Method of Test for Pavement DeflectionMeasurementsT317-02 Standard Method of Test for Prediction ofAsphalt-Bound Pavement Layer Temperatures2.3 Federal Highway Administration:4FHWA-RD-98-
6、085, Temperature Predictions and Adjust-ment Factors for Asphalt Pavements, June 2000LTPP Guide to Asphalt Temperature Prediction and Correc-tion, Online Temperature Prediction and CorrectionGuideTOC, November 20023. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 BELLS an acrony
7、m based on the initials of the fourdevelopers of the method: Baltzer, Ertman-Larsen, Lukanen,and Stubstad.3.1.2 depththe distance below the surface of the top layerof asphalt.3.1.3 1-day air temperaturethe average of the minimumand maximum air temperatures at the location of testing duringthe previo
8、us complete 24-hour day.4. Summary of Test Method4.1 Input Data Elements:4.1.1 IR TemperatureThe exposed surface temperature ofan asphalt pavement is measured, preferably with an infrared(IR) temperature sensing device that is properly calibrated.4.1.2 Time of DayThe time of day the temperature mea-
9、surement takes place is recorded.4.1.3 1-Day TemperatureThe average 1-day air tempera-ture of the previous complete 24-hour day is determined andrecorded.4.1.4 Pavement DepthThe depth at which an estimate ofthe asphalt layer temperature is required is specified.4.2 The input data elements are entere
10、d into a regressionformula that predicts the temperature within the asphalt pave-ment at depth.5. Significance and Use5.1 Analysis of deflection data from asphalt pavementsalmost always requires that the raw deflections or the analysisresults from the load-deflection data be adjusted for the effects
11、of pavement surface course temperature. Measuring the tem-perature at-depth normally requires that a hole be drilled intothe pavement, partially filled with fluid, and the temperaturemeasured with a hand-held device.Alternatively, thermistors orother temperature instrumentation may be permanently in
12、-stalled at various locations.5.2 Current deflection testing equipment is often equippedwith surface temperature sensing devices, for example aninfrared thermometer that measures the surface temperature atevery test location. To adequately adjust the deflection or1This test method is under the juris
13、diction of ASTM Committee E17 on Vehicle- Pavement Systems and is the direct responsibility of Subcommittee E17.41 onPavement Testing and Evaluation.Current edition approved Sept. 1, 2011. Published September 2011. Originallyapproved in 2006. Last previous edition approved in 2006 as D7228 06A. DOI:
14、10.1520/D7228-06AR11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from American Association of
15、State Highway and TransportationOfficials (AASHTO), 444 N. Capitol St., NW, Suite 249, Washington, DC 20001.4Available from Federal Highway Administration (FHWA) 400 Seventh Street,SW Washington, DC 20590.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-
16、2959, United States.deflection results for the effects of temperature, the temperatureat some depth must be known.5.3 This test method provides a means of estimating thetemperature at-depth from the pavement surface temperature,the time of day, the previous days high and low air tempera-tures, and t
17、he desired depth where the temperature is to beestimated. Utilization of this method results in a significantsavings in time over the conventional practice of manuallydrilling holes into the pavement, and it results in a significantincrease in the volume of temperature data (one pavementtemperature
18、for each test point) and the ability to recordtemperature variations between test points.6. Apparatus6.1 Surface Temperature Measurement DeviceThe sur-face temperature measurement device can be an infrared (IR)thermometer mounted on a deflection device, a hand-held IRthermometer, or a surface contac
19、t thermometer. The tempera-ture measurement device should be calibrated according to themanufacturers recommendations.7. Calculation7.1 BELLS MethodThe BELLS method for productiontesting (called BELLS3 in other publications) has been derivedbased on temperature measurements taken on pavement sur-fac
20、es that have been shaded for a short period (less than oneminute) of time. The following equation is valid for approxi-mately 30 seconds of shading:Td5 0.95 1 0.892 * IR 1 $log d! 1.25%$0.448 * IR1 0.621 * 1day! 1 1.83 * sin hr18 15.5!%1 0.042 * IR * sin hr18 13.5! (1)where:Td= pavement temperature
21、at depth d, C,IR = infrared surface temperature, C,log = base 10 logarithm,d = depth at which asphalt temperature is to be pre-dicted, mm,1-day = average of the minimum and maximum air tem-peratures, C, for the previous complete 24-hourday before testing,sin = sin function in 18-hour clock system, w
22、ith 2pradians equal to one 18-hour cycle, andhr18= time of day, in 24-hour system, but calculatedusing an 18-hour temperature rise and fall cycle, asindicated in 7.1.1 and 7.1.2.7.1.1 When using the sin (hr18 15.5) decimal time func-tion, only use times from 11:00 to 05:00 hrs. If the actual timeis
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD72282006A20116250STANDARDTESTMETHODFORPREDICTIONOFASPHALTBOUNDPAVEMENTLAYERTEMPERATURES 沥青 结合 路面

链接地址:http://www.mydoc123.com/p-524881.html