ASTM D5310-2010(2014) Standard Test Method for Tar Acid Composition by Capillary Gas Chromatography《用毛细管气体色谱法测定焦油酸成份的标准试验方法》.pdf
《ASTM D5310-2010(2014) Standard Test Method for Tar Acid Composition by Capillary Gas Chromatography《用毛细管气体色谱法测定焦油酸成份的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM D5310-2010(2014) Standard Test Method for Tar Acid Composition by Capillary Gas Chromatography《用毛细管气体色谱法测定焦油酸成份的标准试验方法》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D5310 10 (Reapproved 2014)Standard Test Method forTar Acid Composition by Capillary Gas Chromatography1This standard is issued under the fixed designation D5310; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year
2、 of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the quantitative determinationof phenol and certain homologues of phenol in tar acid andcr
3、esylic acid mixtures using capillary gas chromatography. It isa normalization test method that determines homolog distribu-tion but is not an absolute assay since it does not account forwater or other compounds not detected by a flame ionizationdetector.1.2 In determining the conformance of the test
4、 results usingthis method to applicable specifications, results shall berounded off in accordance with the rounding-off method ofPractice E29.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard does not purport
5、 to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 8.2.
6、Referenced Documents2.1 ASTM Standards:2D3852 Practice for Sampling and Handling Phenol, Cresols,and Cresylic AcidD4790 Terminology of Aromatic Hydrocarbons and RelatedChemicalsD6809 Guide for Quality Control and Quality AssuranceProcedures for Aromatic Hydrocarbons and Related Ma-terialsE29 Practic
7、e for Using Significant Digits in Test Data toDetermine Conformance with Specifications2.2 Other Documents:OSHA Regulations, 29 CFR paragraphs 1910.1000, and1910.120033. Terminology3.1 For definition of terms used in this test method seeTerminology D4790.4. Summary of Test Method4.1 The sample compo
8、sition is determined by capillary gaschromatography. The weight percent composition is calculatedfrom the ratio of the individual peak areas to the total area ofall peaks using appropriate response factors determined foreach component by means of a calibration sample.5. Significance and Use5.1 This
9、test method is suitable for the general quantitativeanalysis of commercial tar acid mixtures. It may be used as atool for quality control and specification purposes by producersand users.6. Apparatus6.1 ChromatographAgas chromatograph compatible withcapillary columns, equipped with inlet splitter an
10、d high tem-perature flame ionization detector. Typical Operating Condi-tions are given in Table 1.6.2 Peak IntegratorElectronic integration is recom-mended.6.3 Recorder, with full scale response time of1sorless.6.4 Microsyringe, capacity of 1 L.6.5 Capillary ColumnAny column capable of resolvingall
11、components of interest. Prepared columns are commerciallyavailable from chromatography supply houses. Chromato-grams from three columns are presented in Fig. 1, Fig. 2, andFig. 3. Peak identification is given in Table 2.7. Reagents and Materials7.1 Calibration StandardsSamples of known compositionre
12、presentative of samples to be analyzed.1This test method is under the jurisdiction of ASTM Committee D16 onAromatic Hydrocarbons and Related Chemicals and is the direct responsibility ofSubcommittee D16.02 on Oxygenated Aromatics.Current edition approved July 1, 2014. Published July 2014. Originally
13、 approvedin 1994. Last previous edition approved in 2010 as D5310 101. DOI: 10.1520/D5310-10R14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Docume
14、nt Summary page onthe ASTM website.3Available from U.S. Government Printing Office Superintendent of Documents,732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http:/www.access.gpo.gov.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. Un
15、ited States18. Hazards8.1 Consult current OSHA regulations and suppliers mate-rial safety data sheets, and local regulations for all materialsused in this test method.9. Sampling9.1 Sample the material in accordance with Practice D3852.10. Calibration10.1 Prepare a sample of known composition to con
16、taineach component in the approximate concentration expected inthe unknown sample. Make sure that each component in thepreparation is of known purity. Even when purchased asreagent grade, it is prudent to verify impurities, includingwater.10.2 Inject an appropriate amount of the calibration samplefr
17、om 10.1 into the chromatograph and allow to run till allcomponents clear the column. Fig. 1, Fig. 2, and Fig. 3 arechromatograms of a cresylic acid blend illustrating typicalseparations and retention times.10.3 Determine a response factor for each component.Choose one of the major components as the
18、reference peak,and calculate response factors relative to the reference peak.The response factor for the reference peak will be 1.TABLE 1 Typical Chromatographic Operating ConditionsColumn Liquid Phase Diisodecyl PhthalateCyanopropyl 25 %, Phenyl 25 %,Methylpolysiloxane 50 %, Bonded PhaseDimethyl 95
19、 %, Diphenylpolysiloxane5 %, Bonded PhaseColumn Fused Silica Fused Silica Fused SilicaColumn length, m 30 25 30Column ID, mm 0.25 0.22 0.25Film thickness, m 0.2 0.2 0.25Column temperature,C 100 100 105Detector temperature,C 200275 200275 200275Injection block temperature, C 200275 200275 200275Carri
20、er gas H2or He H2or He H2or HeCarrier flow, linear velocity, cm/s 4080 4080 4080Hydrogen flow to flame, mL/min 3040 (optimize) 3040 (optimize) 3040 (optimize)Air flow to flame ;10H2flow (optimize) ;10H2flow (optimize) ;10H2flow (optimize)Make up gasAN2or He N2or He N2or HeSample size, L 0.050.1 0.05
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD531020102014STANDARDTESTMETHODFORTARACIDCOMPOSITIONBYCAPILLARYGASCHROMATOGRAPHY 毛细管 气体 色谱 测定 焦油

链接地址:http://www.mydoc123.com/p-519441.html