ASTM D2304-2018 Standard Test Method for Thermal Endurance of Rigid Electrical Insulating Materials.pdf
《ASTM D2304-2018 Standard Test Method for Thermal Endurance of Rigid Electrical Insulating Materials.pdf》由会员分享,可在线阅读,更多相关《ASTM D2304-2018 Standard Test Method for Thermal Endurance of Rigid Electrical Insulating Materials.pdf(8页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D2304 10D2304 18Standard Test Method forThermal Endurance of Rigid Electrical Insulating Materials1This standard is issued under the fixed designation D2304; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of
2、last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope Scope*1.1 This test method2 provides procedures for evaluating the thermal endurance of rigid electrical insulating mater
3、ials.Dielectric strength, flexural strength, or water absorption are determined at room temperature after aging for increasing periods oftime in air at selected-elevated temperatures. A thermal-endurance graph is plotted using a selected end point at each agingtemperature. A means is described for d
4、etermining a temperature index by extrapolation of the thermal endurance graph to aselected time.1.2 This test method is most applicable to rigid electrical insulation such as supports, spacers, voltage barriers, coil forms,terminal boards, circuit boards and enclosures for many types of application
5、 where retention of the selected property after heataging is important.1.3 When dielectric strength is used as the aging criterion, it is also acceptable to use this test method for some thin sheet(flexible) materials, which become rigid with thermal aging, but is not intended to replace Test Method
6、 D1830 for those materialswhich must retain a degree of flexibility in use.1.4 This test method is not applicable to ceramics, glass, or similar inorganic materials.1.5 The values stated in metric units are to be regarded as standard. Other units (in parentheses) are provided for information.1.6 Thi
7、s standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety safety, health, and healthenvironmental practices and determine theapplicability of regulatory limitations prior to
8、 use. A specific warning statement is given in 10.3.411.3.4.1.7 This international standard was developed in accordance with internationally recognized principles on standardizationestablished in the Decision on Principles for the Development of International Standards, Guides and Recommendations is
9、suedby the World Trade Organization Technical Barriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:3D149 Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials atCommercial Power FrequenciesD229 Test Methods for Rigid Shee
10、t and Plate Materials Used for Electrical InsulationD570 Test Method for Water Absorption of PlasticsD790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating MaterialsD1830 Test Method for Thermal Endurance of Flexible Sheet Materials Used for Elect
11、rical Insulation by the Curved ElectrodeMethodD5423 Specification for Forced-Convection Laboratory Ovens for Evaluation of Electrical Insulation2.2 IEEE:4No. 1 General Principles Upon Which Temperature Limits Are Based in the Rating of Electric EquipmentNo. 98 Guide for the Preparation of Test Proce
12、dures for the Thermal Evaluation of Electrical Insulating Materials1 This test method is under the jurisdiction of ASTM Committee D09 on Electrical and Electronic Insulating Materials and is the direct responsibility of SubcommitteeD09.07 on Flexible and Rigid Electrical Insulating Materials.Current
13、 edition approved Oct. 1, 2010May 1, 2018. Published October 2010May 2018. Originally issued as D2304 64 T. Last previous edition approved in 20022010as D2304 97D2304 10.R02. DOI: 10.1520/D2304-10.10.1520/D2304-18.2 This test method is a revision of a procedure written by the Working Group on Rigid
14、Electrical Insulating Materials of the Subcommittee on Thermal Evaluation, IEEEElectrical Insulation Committee, which was presented as CP 59-113 at the IEEE Winter General Meeting Feb. 16, 1959. See references at end of this test method.3 For referencedASTM standards, visit theASTM website, www.astm
15、.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.4 Available from the Institute of Electrical and Electronics Engineers, 445 Hoes Ln., P.O. Box 1331, Piscataway, NJ 08854-13
16、31.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior
17、editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-
18、2959. United States1No. 101 Guide for the Statistical Analysis of Test Data3. Terminology3.1 Definitions:3.1.1 Arrhenius plot, na graph of the logarithm of thermal life as a function of the reciprocal of absolute temperature.3.1.1.1 DiscussionThis is normally depicted as the best straight line fit,
19、determined by least squares, of end points obtained at aging temperatures.It is important that the slope, which is the activation energy of the degradation reaction, be approximately constant within theselected temperature range to ensure a valid extrapolation.3.1.2 temperature index, na number whic
20、h permits comparison of the temperature/time characteristics of an electricalinsulating material, or a simple combination of materials, based on the temperature in degrees Celsius which is obtained byextrapolating the Arrhenius plot of life versus temperature to a specified time, usually 20 000 h.3.
21、1.3 thermal life, nthe time necessary for a specific property of a material, or a simple combination of materials, to degradeto a defined end point when aged at a specified temperature.3.1.4 thermal life curve, na graphical representation of thermal life at a specified aging temperature in which the
22、 value of aproperty of a material, or a simple combination of materials, is measured at room temperature and the values plotted as a functionof time.3.2 Definitions of Terms Specific to This Standard:3.2.1 rigid electrical insulating material, nan electrical insulating material having a minimum flex
23、ural modulus of 690 MPaand minimum use thickness of 0.5 mm (0.02 in.). It is generally used as terminal boards, spacers, coil forms, voltage barriers, andcircuit boards.4. Hazards4.1 High Voltage:4.1.1 Lethal voltages are a potential hazard during the performance of this test. It is essential that t
24、he test apparatus, and allassociated equipment electrically connected to it, be properly designed and installed for safe operation.4.1.2 Solidly ground all electrically conductive parts which it is possible for a person to contact during the test.4.1.3 Provide means for use at the completion of any
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMD23042018STANDARDTESTMETHODFORTHERMALENDURANCEOFRIGIDELECTRICALINSULATINGMATERIALSPDF

链接地址:http://www.mydoc123.com/p-511424.html