ASTM C870-1996(2004) Standard Practice for Conditioning of Thermal Insulating Materials《热绝缘材料的调整的标准实施规程》.pdf
《ASTM C870-1996(2004) Standard Practice for Conditioning of Thermal Insulating Materials《热绝缘材料的调整的标准实施规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM C870-1996(2004) Standard Practice for Conditioning of Thermal Insulating Materials《热绝缘材料的调整的标准实施规程》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: C 870 96 (Reapproved 2004)Standard Practice forConditioning of Thermal Insulating Materials1This standard is issued under the fixed designation C 870; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last re
2、vision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers the conditioning of thermal insu-lating materials for tests. Since prior exposure of insulatingmaterial
3、s to high or low humidity may affect the equilibriummoisture content, a procedure is also given for preconditioningthe materials.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish
4、 appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C 168 Terminology Relating to Thermal InsulationE 41 Terminology Relating to ConditioningE 171 Specification for Standard Atmospheres for Condi
5、-tioning and Testing Flexible Barrier MaterialsE 337 Test Method for Measuring Humidity with a Psy-chrometer (the Measurement of Wet- and Dry-Bulb Tem-peratures)2.2 ISO Standard:3ISO 544 Standard Atmospheres for Conditioning and/orTesting3. Terminology3.1 DefinitionsDefinitions of terms in the field
6、 of thermalinsulating materials are given in Terminology C 168. Thefollowing definitions are derived from Terminology E41:3.1.1 moisture contentthe moisture present in a material,as determined by definite prescribed methods, expressed as apercentage of the mass of the sample on either of the followi
7、ngbases: (1) original mass (see 3.1.1); (2) moisture-free weight(see 3.1.2).3.1.1.1 DiscussionThis is variously referred to as mois-ture content, or moisture “as is” or “as received.”3.1.1.2 DiscussionThis is also referred to as moistureregain (frequently contracted to “regain”), or moisture content
8、on the “oven-dry,” “moisture-free,” or “dry” basis.3.1.2 moisture equilibriumthe condition reached by asample when the net difference between the amount of mois-ture sorbed and the amount desorbed, as shown by a change inmass, shows no trend and becomes insignificant.3.1.2.1 DiscussionSuperficial eq
9、uilibrium with the film ofair in contact with the specimen is reached very rapidly. Stableequilibrium can be reached in a reasonable time only if the airto which the sample is exposed is in motion. Stable equilibriumwith air in motion is considered to be realized when successiveweighings do not show
10、 a progressive change in mass greaterthan the tolerances established for the various insulatingmaterials.3.1.3 moisture regainthe moisture in a material deter-mined under prescribed conditions, and expressed as a percent-age of the mass of the moisture-free specimen.3.1.3.1 DiscussionMoisture regain
11、 calculations are com-monly based on the mass of a specimen that has been dried byheating in an oven. If the air in the oven contains moisture, theoven-dried specimen will contain some moisture even when itno longer shows a significant change in mass. In order toensure that the specimen is moisture-
12、free, it must be exposed todesiccated air until it shows no further significant change in itsmass. For drying temperatures above 100C (212F), themoisture content of the oven atmosphere is negligible.3.1.3.2 DiscussionMoisture regain may be calculatedfrom moisture content using Eq 1, and moisture con
13、tent may becalculated from moisture regain using Eq 2 as follows:R 5C100 2 C3 100 (1)C 5R100 1 R3 100 (2)where:C = moisture content, % (see 3.1.1), andR = moisture regain, % (see 3.1.3).3.2 Definitions of Terms Specific to This StandardThefollowing descriptions apply only to the usage of terms in th
14、ispractice:1This practice is under the jurisdiction of ASTM Committee C16 on ThermalInsulation and is the direct responsibility of Subcommittee C16.31 on Chemical andPhysical Properties.Current edition approved Nov. 1, 2004. Published November 2004. Originallyapproved in 1977. Last previous edition
15、approved in 2000 as C 870 77 (2000).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from American
16、National Standards Institute, 11 West 42nd Street,13th Floor, New York, NY 10036.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.2.1 conditioned moisture equilibriumThe moisture con-dition reached by a sample or specimen during fre
17、e exposure tomoving air controlled at specified conditions. For test purposes,moisture equilibrium must be reached by absorption, startingfrom a relatively low moisture content (see 3.2.4). Moistureequilibrium for testing is considered to have been reachedwhen the rate of increase in the mass of a s
18、ample or specimendoes not exceed that specified for the material being tested. Inthe absence of a specified rate, an increase of less than 0.1 %of the sample mass after a 24-h exposure is consideredsatisfactory.3.2.2 preconditioned moisture equilibriumThe moisturecondition reached by a sample or spe
19、cimen after exposure tomoving air at the standard atmosphere for preconditioning. Thefinal condition may be established after a specified period oftime, or at a moisture equilibrium that is considered to havebeen reached when the change in mass of a specimen insuccessive weighings made at intervals
20、of not less than 2 hdoes not exceed 0.2 % of the mass of the specimen.3.2.2.1 DiscussionBecause the standard preconditioningatmosphere covers a range of relative humidities, the closeapproach to equilibrium is, in general, warranted only at the topof the range. At lower humidities exposure for sever
21、al hours isusually sufficient.3.2.3 standard conditioning atmosphereAir maintained ata relative humidity of 50 6 5 % and at a temperature of 23 62C (73 6 4F). This atmosphere may be used for testingwithout preconditioning specimens if it has been determinedthat the property being measured is not aff
22、ected by the moisturecontent of the material. Other atmospheric conditions may bespecified for specific materials; such conditions and theirtolerances will be included in pertinent standards. See Speci-fication E 171 for other suggested atmospheric conditions.3.2.4 standard preconditioning atmospher
23、eAn atmo-sphere having uncontrolled humidity and a constant tempera-ture within the range from 100 to 120C (212 to 248F), or aspecified lower temperature if these temperatures would bedestructive to the specimens.3.2.5 See Appendix X1-Appendix X3 for related nonman-datory information.4. Summary of P
24、ractice4.1 Specimens are brought to a low moisture content in thepreconditioning atmosphere, and subsequently brought to con-ditioned moisture equilibrium in the conditioning atmospherein accordance with the specified test method.5. Significance and Use5.1 The conditioning prescribed in this recomme
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMC87019962004STANDARDPRACTICEFORCONDITIONINGOFTHERMALINSULATINGMATERIALS 绝缘材料 调整 标准 实施 规程 PDF

链接地址:http://www.mydoc123.com/p-508600.html