ASTM A799 A799M-2004(2009) Standard Practice for Steel Castings Stainless Instrument Calibration for Estimating Ferrite Content.pdf
《ASTM A799 A799M-2004(2009) Standard Practice for Steel Castings Stainless Instrument Calibration for Estimating Ferrite Content.pdf》由会员分享,可在线阅读,更多相关《ASTM A799 A799M-2004(2009) Standard Practice for Steel Castings Stainless Instrument Calibration for Estimating Ferrite Content.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: A799/A799M 04 (Reapproved 2009)Standard Practice forSteel Castings, Stainless, Instrument Calibration, forEstimating Ferrite Content1This standard is issued under the fixed designation A799/A799M; the number immediately following the designation indicates the yearof original adoption or
2、, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.A superscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers the procedure for calibration ofinstruments to be used for
3、 estimating the ferrite content of themicrostructure of cast stainless steels by magnetic response ormeasurement of permeability. This procedure covers bothprimary and secondary instruments.1.1.1 A primary instrument is one that has been calibratedusing National Institute of Standards and Technology
4、-StandardReference Material (NIST-SRM) thickness coating standards.It is a laboratory tool to be used with test specimens. Someprimary instruments may be used to directly measure the ferritecontent of castings.1.1.2 A secondary instrument is one that has been calibratedby the use of secondary standa
5、rds that have been measured bya calibrated primary instrument. Secondary instruments are tobe used to directly measure the ferrite content of castings.1.2 The values stated in either inch-pound units or SI unitsare to be regarded separately as standard. Within the text, theSI units are shown in brac
6、kets. The values stated in eachsystem are not exact equivalents; therefore, each system mustbe used independently of the other. Combining values from thetwo systems may result in nonconformance with the specifi-cation.1.3 This standard does not purport to address all of thesafety concerns, if any, a
7、ssociated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2A941 Terminology Relating to Steel, Stainless Steel, R
8、e-lated Alloys, and FerroalloysB499 Test Method for Measurement of Coating Thick-nesses by the Magnetic Method: Nonmagnetic Coatings onMagnetic Basis MetalsE562 Test Method for Determining Volume Fraction bySystematic Manual Point Count2.2 NIST Standard:NIST-SRM Coating Thickness StandardsNOTE 1The
9、specific coating thickness standards previously refer-enced in this practice are no longer available. Similar ones are nowavailable from NIST.3. Terminology3.1 Definitions: The definitions in Terminology A941 areapplicable to this standard.3.2 Definitions of Terms Specific to This Standard:3.2.1 fer
10、rite, nthe body-centered cubic microconstituentin stainless steel.3.2.2 ferrite percentage, na value designating the ferritecontent of stainless steels.3.2.2.1 DiscussionThe Steel Founders Society ofAmerica (SFSA) has assigned ferrite percentages to the seriesof NIST coating thickness standards3. Th
11、is assignment wasbased on the magnetic attraction for a standard magnet by thecoating standards when compared with the magnetic attractionof the same magnet by a series of cast stainless steels whoseferrite content had been determined by an accurate metallo-graphic point count. A similar assignment
12、based on magneticpermeability was also established. Algebraic equations havenow been derived from a plot of the thickness of thesestandards and the assigned ferrite percentages. By the use ofthese equations, any primary instrument will have its calibra-tion traceable to the SFSAs instruments or any
13、other calibratedinstrument and thus afford comparable reproducible ferritepercentages. It also allows traceability to NIST.3.2.3 secondary standards, na piece of cast stainless steelwhose ferrite percentage has been determined by a calibratedprimary instrument.3.2.3.1 DiscussionSecondary statements
14、are used to cali-brate secondary instruments (see Calibration of SecondaryInstruments).1This practice is under the jurisdiction of ASTM Committee A01 on Steel,Stainless Steel and Related Alloys and is the direct responsibility of SubcommitteeA01.18 on Castings.Current edition approved Oct. 1, 2009.
15、Published January 2010. Originallyapproved in 1982. Last previous edition approved in 2004 as A799/A799M 04.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the stan
16、dards Document Summary page onthe ASTM website. DOI: 10.1520/A0799_A0799M-04R09.3Aubrey, L.S., Weiser, P.F., Pollard, W.J., and Schoefer, E.A., “Ferrite Measure-ment and Control in Cast Duplex Stainless Steels,” Stainless Steel Castings, ASTMSTP 756, ASTM, 1982, p 126.1Copyright ASTM International,
17、100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4. Significance and Use4.1 The amount of ferrite present in an austenitic stainlesssteel has been shown to influence the strength, toughness andcorrosion resistance of this type of cast alloy. The amount offerrite pr
18、esent tends to correlate well with the magneticpermeability of the steel. The methods described in thisstandard cover calibration practice for estimating ferrite by themagnetic permeability of the steel. The practice is inexpensiveto use over large areas of the cast part and is non-destructive.4.2 T
19、his practice has been used for research, alloy develop-ment, quality control, and manufacturing control.4.2.1 Many instruments are available having different de-signs, and different principles of operation. When the probe isplaced on the material being investigated, a closed magneticcircuit is forme
20、d allowing measurement of the magneticpermeability. When calibrated with standards having knownferrite content, this permeability indicates the ferrite content ofthe material being analyzed. The estimated ferrite content isread from a calibrated dial or from a digital-readout dial.Follow the manufac
21、turers instructions for proper calibration ofthe instrument.4.3 Since this practice measures magnetic attraction and notferrite directly, it is subject to all of the variables that affectmagnetic permeability, such as the shape, size, orientation, andcomposition of the ferrite phase. These in turn a
22、re affected bythermal history. Ferrite measurements by magnetic methodshave also been found to be affected by the surface finish of thematerial being analyzed.4.4 Magnetic methods should not be used for arbitration ofconflicts on ferrite content except when agreed upon betweenmanufacturer and purcha
23、ser.5. Apparatus5.1 One primary instrument that uses magnetic attractionconsists of a spring-loaded balance arm from which a rod-shaped magnet is suspended.4The opposite end of the balancearm from the magnet has counterweights that balance most butnot all of the weight of the magnet.5.1.1 When this
24、instrument is used, the spring load isrelaxed sufficiently to allow the magnet to make contact withthe material being tested.5.1.2 The spring is then wound until the force of the coiledspring overcomes the magnetic attraction of the magnet for thematerial being tested, causing the magnet to break co
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMA799A799M20042009STANDARDPRACTICEFORSTEELCASTINGSSTAINLESSINSTRUMENTCALIBRATIONFORESTIMATINGFERRITECONTENTPDF

链接地址:http://www.mydoc123.com/p-459597.html