ASTM A1034 A1034M-2010a(2015) Standard Test Methods for Testing Mechanical Splices for Steel Reinforcing Bars《钢筋机械接头试验的标准试验方法》.pdf
《ASTM A1034 A1034M-2010a(2015) Standard Test Methods for Testing Mechanical Splices for Steel Reinforcing Bars《钢筋机械接头试验的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM A1034 A1034M-2010a(2015) Standard Test Methods for Testing Mechanical Splices for Steel Reinforcing Bars《钢筋机械接头试验的标准试验方法》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: A1034/A1034M 10a (Reapproved 2015)Standard Test Methods forTesting Mechanical Splices for Steel Reinforcing Bars1This standard is issued under the fixed designation A1034/A1034M; the number immediately following the designation indicates theyear of original adoption or, in the case of r
2、evision, the year of last revision. A number in parentheses indicates the year of lastreapproval. A superscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 These test methods cover the testing of mechanicalsplices for reinforcing bars. The various tests
3、 herein describedcan be specified in total or individually.1.2 The test methods herein described are applicable to anytype of mechanical splice manufactured to join steel reinforc-ing bars of any grade (specified minimum yield strength),uncoated or coated.1.3 This standard describes only the methods
4、 for testingmechanical splices for steel reinforcing bars, but does notquantify the parameters for testing nor acceptance criteria,which must be specified.NOTE 1Various code-writing bodies specify various parameters, suchas test loads, number of cycles and test temperature, for testing.1.4 The value
5、s stated in either SI units or inch-pound unitsare to be regarded separately as standard. The values stated ineach system may not be exact equivalents; therefore, eachsystem shall be used independently of the other. Combiningvalues from the two systems may result in non-conformancewith the standard.
6、1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced D
7、ocuments2.1 ASTM Standards:2A370 Test Methods and Definitions for Mechanical Testingof Steel ProductsE4 Practices for Force Verification of Testing MachinesE8 Test Methods for Tension Testing of Metallic MaterialsE9 Test Methods of Compression Testing of Metallic Mate-rials at Room TemperatureE29 Pr
8、actice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE83 Practice for Verification and Classification of Exten-someter SystemsE466 Practice for Conducting Force Controlled ConstantAmplitude Axial Fatigue Tests of Metallic MaterialsE467 Practice for Verification
9、 of Constant Amplitude Dy-namic Forces in an Axial Fatigue Testing System3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 bar-splice assemblyan assembled specimen consist-ing of two reinforcing bars connected with a mechanical splice.3.1.2 clip gagean electrical device used to
10、measure smalldisplacements in test specimens whose voltage output isconvertible into strain.3.1.3 couplerthreaded device for joining reinforcing barsfor the purpose of providing transfer of either axial compres-sion or axial tension or both from one bar to the other.3.1.4 coupling sleevenon-threaded
11、 device for joining re-inforcing bars for the purpose of providing transfer of eitheraxial compression or axial tension or both from one bar to theother.3.1.5 data acquisition systema computer based data log-ging system to record the output of electrical transducersreporting load, strain or displace
12、ment.3.1.6 differential elongationthe difference between thetotal movement measured on the splice specimen from zeroload to a predetermined test load and the total movementmeasured on an unspliced bar specimen under the samepredetermined load.3.1.7 linear variable differential transformer (LVDT)anel
13、ectrical device used to measure displacements, whose voltageoutput is convertible into strain.3.1.8 mechanical splicethe complete assembly of a cou-pler or a coupling sleeve and possibly additional interveningmaterial or other components to accomplish the splicing of tworeinforcing bars.3.1.9 slipth
14、e difference in extensometer readings over thegage length across the splice, measured at an initial nominal1These test methods are under the jurisdiction of ASTM Committee A01 onSteel, Stainless Steel and Related Alloys and are the direct responsibility ofSubcommittee A01.05 on Steel Reinforcement.C
15、urrent edition approved Dec. 1, 2015. Published December 2015. Originallyapproved in 2004. Last previous edition approved in 2010 as A1034/A1034M 10a.DOI: 10.1520/A1034_A1034M-10AR15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.
16、org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1zero load and, after having loaded the bar-splice assembly to at
17、est load and unloaded it again, at the same nominal zero load.3.1.10 splice componentsall components that make up amechanical splice for reinforcing bars, including coupler,coupling sleeve, locknuts, bolts, grout, epoxy, ferrous fillermetal and/or other components.4. Summary of Test Method4.1 Variou
18、s test methods are used to determine the perfor-mance of a mechanical splice under loading.4.1.1 Monotonic Tension TestThis test measures the per-formance of the bar-splice assembly under an increasingtension load. The specimen is placed in the testing machine andpulled to failure.NOTE 2Testing of s
19、pecimens in tension to failure should be ap-proached with caution. Some types of mechanical splices may shatterwhile failing in tension.4.1.2 Monotonic Compression TestThis test is used toascertain the performance of the bar-splice assembly under anincreasing compressive load. The specimen is placed
20、 in thetesting machine and is loaded in compression until failure or aspecified load is applied.NOTE 3Typical maximum compressive load imposed in this test is125 % of the specified yield strength of the reinforcing bar. Testing ofspecimens in compression should be approached with caution. Thebucklin
21、g load predicted by Euler Column formula may be less than thecompression load specified.4.1.3 Cyclic Load TestThis test is used to ascertain howthe bar-splice assembly performs when the specimen is sub-jected to alternating tension and compression cycles. Thespecimen is placed in the testing machine
22、 and is loaded intension, then in compression until the specified number ofcycles is reached. Each cycle may exceed the yield strain of thebar and is intended to simulate the demands of earthquakeloading on the specimen.4.1.4 High-Cycle Fatigue TestThis test is conducted withalternating tension load
23、 cycles or alternating tension to com-press load cycles, with the load staying below the yieldstrength of the reinforcing bar. This test is conducted untilfailure or a specified number of cycles are reached andsimulates the demands on mechanical splices placed in bridgesor other structures subjected
24、 to frequent elastic load cycles.4.1.5 Slip TestThis test is used to ascertain the plasticmovement (slip) between reinforcing bars within the bar-sliceassembly, when loaded in tension.4.1.6 Low-Temperature TestThis test is run using the testmethods described in 4.1.1 through 4.1.5, to ascertain theb
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMA1034A1034M2010A2015STANDARDTESTMETHODSFORTESTINGMECHANICALSPLICESFORSTEELREINFORCINGBARS 钢筋 机械 接头

链接地址:http://www.mydoc123.com/p-457291.html