ANSI ASHRAE 51-2016 Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating.pdf
《ANSI ASHRAE 51-2016 Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating.pdf》由会员分享,可在线阅读,更多相关《ANSI ASHRAE 51-2016 Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating.pdf(82页珍藏版)》请在麦多课文档分享上搜索。
1、ANSI/AMCA Standard 210-16 ASHRAE Standard 51-16 Air Movement and Control Association International AMCA Corporate Headquarters 30 W. University Drive, Arlington Heights, IL 60004-1893, USA communicationsamca.org Ph: +1-847-394-0150 www.amca.org 2016 AMCA International and ASHRAE Laboratory Methods o
2、f Testing Fans for Certified Aerodynamic Performance Rating STANDARDANSI/AMCA Standard 210-16 ANSI/ASHRAE Standard 51-16 Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating Air Movement and Control Association International 30 W. University Drive Arlington Heights, Illino
3、is 60004 American Society of Heating, Refrigerating and Air Conditioning Engineers 1791 Tullie Circle, NE Atlanta, GA 30329-2305AMCA Publications Authority AMCA Standard 210-16 was adopted by the membership of the Air Movement and Control Association International Inc. on July 20, 2016 and by ASHRAE
4、 on June 29, 2016. It was approved by the American National Standards Institute on August 26, 2016. Copyright 2016 by Air Movement and Control Association International Inc. All rights reserved. Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
5、 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the executive direc- tor, Air Movement and Control Association International Inc. at 30 West University Drive, Arlington Heights, IL 60004-189
6、3 U.S. Objections Air Movement and Control Association International Inc. will consider and take action upon all written complaints regarding its standards, certification programs or interpretations thereof. For information on procedures for submitting and handling complaints, write to Air Movement
7、and Control Association International 30 West University Drive Arlington Heights, IL 60004-1893 U.S.A. AMCA International Incorporated European AMCA Avenue des Arts, numro 46 Bruxelles (1000 Bruxelles) Asia AMCA Sdn Bhd No. 7, Jalan SiLC 1/6, Kawasan Perindustrian SiLC Nusajaya, Mukim Jelutong, 7920
8、0 Nusajaya, Johor Malaysia Disclaimer AMCA uses its best efforts to produce publications for the benefit of the industry and the public in light of available information and accepted industry practices. However, AMCA does not guarantee, certify or assure the safety or performance of any products, co
9、mponents or systems tested, designed, installed or operated in accordance with AMCA publications or that any tests conducted under its publications will be non-hazardous or free from risk.Review Committee Tim Mathson, Committee Chair Greenheck John Cermak, PhD Acme Engineering David Johnson Berner I
10、nternational Corp. Brian Merritt Climatic Testing Systems Inc. Franco Cincotti Comefri USA Inc. Swee Hock Lawrence Ang DongGuan Wolter Chemco Ventilation Ltd Armin Hauer ebm-papst Inc. Fernando A. Ruiz C. Equipos Electromecanicos, S.A. de C.V. Mohamed Farag Egyptian Swedish Air Conditioning Co. S.A.
11、E. Kim Osborn Nortek Air Solutions Dr. John Murphy Jogram Inc. Dan Hake Lau Industries Inc. Charles Gans LSB Climate Solutions Sham Morten Gabr Multi-Wing Z. Patrick Chinoda Revcor, Inc. Edward Hucko Robinson Fans Inc. David Ortiz Gomez Soler (b) positive pressure ventilators; (c) compressors with i
12、nterstage cooling; (d) positive displacement machines; and (e) test procedures to be used for design, production or field testing. 2. Normative References The following standards contain provisions that, through specific reference in this text, constitute provisions of this American National Standar
13、d. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possi- bility of applying the most recent editions of the standards listed below. IEEE 112-96
14、Standard Test Procedure for Polyphase Induction Motors and Generators, The Institute of Electrical and Electronic Engineers, 445 Hoes Lane, Piscataway, NJ 08855-1331, U.S.A. (AMCA #1149). 3. Definitions/Units of Measure/Symbols 3.1 Definitions 3.1.1 Fan A device that uses a power-driven rotating imp
15、eller to move air or gas (see note below). The internal energy increase imparted by a fan to air is limited to 25 kJ/kg (10.75 Btu/ lbm). This limit is approximately equivalent to a pressure of 30 kPa (120 in. wg) (AMCA 99-0066). Note: for the purpose of this standard, the term “air“ is used in the
16、sense of “gaseous fluid.“ 3.1.2 Fan inlet and outlet boundaries The interfaces between a fan and the remainder of the air system; the respective planes perpendicular to an airstream entering or leaving a fan. Various appurtenances (inlet boxes, inlet vanes, inlet cones, silencers, screens, rain hood
17、s, dampers, discharge cones, evass, etc.), may be included as part of a fan between the inlet and outlet boundaries. 3.1.3 Fan input power boundary The interface between a fan and its drive. When mechanical input power is reported, it is the interface between a fan and its drive, which in this conte
18、xt is either a dynamometer or calibrated motor. When electrical input power is reported, it is the interface between mains and the drive. 3.1.4 Driven fan A fan equipped with a drive. 3.1.5 Drive Components used to power the fan, such as a motor, motor control and transmission. Not all of these comp
19、onents are required to constitute a drive. A calibrated motor used to measure fan input power is generally not considered part of the drive. 3.1.6 Transmission A system that transmits mechanical power from the motor to the fan shaft. Examples of transmissions are belts/sheaves, couplings and gears.
20、3.1.7 Fan outlet area The gross inside area measured in the planes of the outlet openings. 3.1.8 Fan inlet area The gross inside area measured in the planes of the inlet connections. For converging inlets without connection elements, the inlet area shall be considered to be that where a plane perpen
21、dicular to the airstream first meets the mouth of the inlet bell or inlet cone. 3.1.9 Dry-bulb temperature Air temperature measured by a temperature-sensing device without modification to compensate for the effect of humidity (AMCA 99-0066). 3.1.10 Wet-bulb temperature The air temperature measured b
22、y a temperature sensor 2 | ANSI/AMCA 210-16 ANSI/ASHRAE 51-16 covered by a water-moistened wick and exposed to air in motion (AMCA 99-0066). 3.1.11 Wet-bulb depression The difference between the dry-bulb and wet-bulb tempera- tures at the same location (AMCA 99-0066). 3.1.12 Stagnation (total) tempe
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIASHRAE512016LABORATORYMETHODSOFTESTINGFANSFORCERTIFIEDAERODYNAMICPERFORMANCERATINGPDF

链接地址:http://www.mydoc123.com/p-431546.html