ASTM E238-17a Standard Test Method for Pin-Type Bearing Test of Metallic Materials.pdf
《ASTM E238-17a Standard Test Method for Pin-Type Bearing Test of Metallic Materials.pdf》由会员分享,可在线阅读,更多相关《ASTM E238-17a Standard Test Method for Pin-Type Bearing Test of Metallic Materials.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E238 17aStandard Test Method forPin-Type Bearing Test of Metallic Materials1This standard is issued under the fixed designation E238; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number
2、in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers a pin-type bearing test ofmetallic materials to determine bearing yield strength andbearing strength.NOTE 1The presen
3、ce of incidental lubricants on the bearing surfacesmay significantly lower the value of bearing yield strength obtained bythis method.1.2 UnitsThe values stated in inch-pound units are to beregarded as standard. The values given in parentheses aremathematical conversions to SI units that are provide
4、d forinformation only and are not considered standard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility
5、of regulatory limitations prior to use.1.4 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World
6、Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2E4 Practices for Force Verification of Testing MachinesE6 Terminology Relating to Methods of Mechanical TestingE83 Practice for Verification and Classification of Exten-someter SystemsB769 Test M
7、ethod for Shear Testing of Aluminum AlloysB831 Test Method for Shear Testing of Thin AluminumAlloy Products3. Terminology3.1 Definitions:3.1.1 bearing areathe product of the pin diameter andspecimen thickness.3.1.2 bearing stressthe force per unit of bearing area.3.1.3 bearing strainthe ratio of the
8、 bearing deformation ofthe bearing hole, in the direction of the applied force, to the pindiameter.3.1.4 bearing yield strengththe bearing stress at which amaterial exhibits a specified limiting deviation from the pro-portionality of bearing stress to bearing strain.3.1.5 bearing strengththe maximum
9、 bearing stress whicha material is capable of sustaining.3.1.6 edge distancethe distance from the edge of a bearingspecimen to the center of the hole in the direction of appliedforce (Fig. 1).3.1.7 edge distance ratiothe ratio of the edge distance tothe pin diameter.3.1.8 For definitions of other te
10、rms see Terminology E6.4. Significance and Use4.1 The data obtained from the bearing test are the bearingultimate and yield strength. The data provide a measure of theload-carrying capacity of a material edge loaded with aclose-fitting cylindrical pin through a hole located a specificdistance from t
11、he specimen edge.4.2 Bearing properties are useful in the comparison ofmaterials and design of structures under conditions where thepin is not restricted.5. Apparatus5.1 Testing MachinesMachines used for bearing testingshall conform to the requirements of Practices E4.5.2 Gripping DevicesVarious typ
12、es of gripping devicesmay be used to transmit the measured load applied by thetesting machine to the test specimens. Any grips considered toapply the load axially for tension testing, such as pin connec-tions or wedge grips, are satisfactory for use in bearing testing.5.3 PinThe bearing load is gene
13、rally applied to thespecimen through a close-fitting cylindrical pin. The pin shallbe harder and stronger than the material being tested. Restraint1This test method is under the jurisdiction of ASTM Committee E28 onMechanical Testing and is the direct responsibility of Subcommittee E28.04 onUniaxial
14、 Testing.Current edition approved April 1, 2017. Published April 2017. Originallyapproved in 1964. Last previous edition approved in 2017 as E238 17. DOI:10.1520/E0238-17A.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For An
15、nual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis intern
16、ational standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Comm
17、ittee.1of movement of the specimen where it is in contact with the pinhas a considerable effect upon the hole deformation obtained asa function of the load applied. Close control of surfaceconditions on both the specimen and pin is needed to assurereproducible results. The pins used should be unifor
18、m indiameter, hardness, and surface roughness. Pin materials,hardness, and surface roughness as shown in Table 1 arerecommended for testing the materials listed. The pin shouldbe checked carefully after each test to ensure that no metallicresidue adheres to it and that it is both straight and undefo
19、rmed.If there is any question regarding its quality it should bereplaced.5.4 Pin SupportThe jig supporting the pin should positionthe pin concentric with the hole in the specimen. It should notrestrain the thickening of the specimen as the load from the pindeforms the hole. Bending of the pin should
20、 be kept to aminimum by having the jig support the pin close to thespecimen. Fig. 2 and Fig. 3 show examples of the types of jigthat have been used and are considered satisfactory.5.5 ExtensometersExtensometers used for measuring thebearing deformation shall comply with the requirements forClass B-2
21、 or better as described in Practice E83. The bearingdeformation measurement shall be made in a manner to obtainthe axial bearing deformation with a minimum of otherdeformations being included such as the bending of the pin andtensile strain in the specimen. Fig. 2 shows an adaptation of aTemplin ext
22、ensometer system to record bearing deformation.Fig. 3 illustrates a mechanism that can be used to transfer thebearing deformation so it can be measured with the sameextensometers used for tension testing. A method of measuringbearing deformation featuring two linear differential transform-ers is sho
23、wn in Fig. 4.FIG. 1 Bearing Test SpecimenTABLE 1 Characteristics of Pin for Various Materials TestedMaterial Tested MaterialRockwellHardnessSurface Roughness, in. (m) (avg)Aluminum alloys hardened steel C60 to 64 4 to 8 (0.1 to 0.2 m)Beryllium alloys hardened steel C60 to 64 4 to 8 (0.1 to 0.2 m)Cop
24、per alloys hardened steel C60 to 64 4 to 8 (0.1 to 0.2 m)Magnesium alloys hardened steel C60 to 64 4 to 8 (0.1 to 0.2 m)Zinc alloys hardened steel C60 to 64 4 to 8 (0.1 to 0.2 m)FIG. 2 Bearing Test Fixture Used on Aluminum SheetE238 17a26. Test Specimens6.1 Specimen GeometryThe specimen shall be a f
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTM E238 17 Standard Test Method for Pin Type Bearing of Metallic Materials

链接地址:http://www.mydoc123.com/p-287084.html