ASTM D5099-08(2017) Standard Test Methods for Rubber—Measurement of Processing Properties Using Capillary Rheometry.pdf
《ASTM D5099-08(2017) Standard Test Methods for Rubber—Measurement of Processing Properties Using Capillary Rheometry.pdf》由会员分享,可在线阅读,更多相关《ASTM D5099-08(2017) Standard Test Methods for Rubber—Measurement of Processing Properties Using Capillary Rheometry.pdf(9页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D5099 08 (Reapproved 2017)Standard Test Methods forRubberMeasurement of Processing Properties UsingCapillary Rheometry1This standard is issued under the fixed designation D5099; the number immediately following the designation indicates the year oforiginal adoption or, in the case of re
2、vision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 These test methods describe how capillary rheometrymay be used to measure the rheological characte
3、ristics ofrubber (raw or compounded). Two methods are addressed:Method Ausing a piston type capillary rheometer, andMethod Busing a screw extrusion type capillary rheometer.The two methods have important differences, as outlined in 710and 1114, respectively.1.2 These test methods cover the use of a
4、capillary rheom-eter for the measurement of the flow properties of thermoplas-tic elastomers, unvulcanized rubber, and rubber compounds.These material properties are related to factory processing.1.3 Since piston type capillary rheometers impart only asmall amount of shearing energy to the sample, t
5、hese measure-ments directly relate to the state of the compound at the time ofsampling. Piston type capillary rheometer measurements willusually differ from measurements with a screw extrusion typerheometer, which imparts shearing energy just before therheological measurement.1.4 Capillary rheometer
6、 measurements for plastics are de-scribed in Test Method D3835.1.5 The values stated in SI units are to be regarded asstandard. The values given in parentheses are for informationonly.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is ther
7、esponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accor-dance with internationally recognized principles on standard
8、-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2D1349 Practice for RubberStandard Conditions for
9、Test-ingD1418 Practice for Rubber and Rubber LaticesNomenclatureD1485 Practice for Rubber from Natural SourcesSampling and Sample PreparationD3182 Practice for RubberMaterials, Equipment, and Pro-cedures for Mixing Standard Compounds and PreparingStandard Vulcanized SheetsD3835 Test Method for Deter
10、mination of Properties ofPolymeric Materials by Means of a Capillary RheometerD3896 Practice for Rubber From Synthetic SourcesSamplingD4483 Practice for Evaluating Precision for Test MethodStandards in the Rubber and Carbon Black ManufacturingIndustries3. Terminology3.1 Definitions of Terms Specific
11、 to This Standard:3.1.1 The following terms appear in logical order for thesake of clarity:3.1.2 capillary rheometeran instrument in which rubbercan be forced from a reservoir through a capillary die; thetemperature, pressure entering the die, and flow rate throughthe die can be controlled and accur
12、ately measured.3.1.3 die entrance pressure (P)the pressure in the reser-voir at the die entrance, in Pa.3.1.4 volumetric flow rate (Q)the flow rate through thecapillary die, in mm3/s.3.1.5 apparent (uncorrected) shear rate (a)shear strainrate (or velocity gradient) of the rubber extrudate as it pass
13、esthrough the capillary die (Eq 1), in s1.3.1.5.1 DiscussionThis velocity gradient is not uniformthrough the cross-section of the capillary die. The shear rate iscalculated for the region of highest shear, at the wall of the1These test methods are under the jurisdiction of ASTM Committee D11 onRubbe
14、r and Rubber-like Materials and are the direct responsibility of SubcommitteeD11.12 on Processability Tests.Current edition approved Oct. 1, 2017. Published December 2017. Originallyapproved in 1993. Last previous edition approved in 2013 as D5099 08 (2013).DOI: 10.1520/D5099-08R17.2For referenced A
15、STM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandardsvolume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshoho
16、cken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organi
17、zation Technical Barriers to Trade (TBT) Committee.1capillary. By selecting a die diameter and controlling thevolumetric flow rate (Q) through the die, a specific level ofapparent shear rate may be achieved. Alternately, the shearstress (die entrance pressure, P) may be controlled, and theapparent s
18、hear rate measured.Mathematically, the apparent shear rate for a Newtonianfluid at the wall is given as follows:a532 Q D3(1)where:a= apparent shear rate, s1,Q = volumetric flow rate, mm3/s, = the constant pi, approximately 3.142, andD = diameter of the capillary die, mm.3.1.6 apparent shear stress (
19、a) the measured resistance toflow through a capillary die (Eq 2).a5P4L/D!(2)where:a= apparent shear stress, Pa,P = pressure at the entrance to the capillary die, Pa,L = length of the capillary die, mm, andD = diameter of the capillary die, mm.3.1.7 apparent viscosity (a) ratio of apparent shear stre
20、ssto apparent shear rate, in Pa-s.3.1.7.1 DiscussionFor a capillary rheometer, the apparentviscosity is usually calculated at a given shear rate.At constanttemperature, the apparent viscosity of most polymers is notconstant, but varies with shear rate. The viscosity is generallyannotated with the sh
21、ear rate at which the measurement wasmade.3.1.8 Newtonian fluida fluid for which viscosity does notvary with changing shear rate. Simple liquids such as rubberextender oils are Newtonian; most polymeric materials are not.3.1.9 power law fluida fluid material for which the vis-cosity varies with the
22、shear rate in accordance with therelationship: 5 K!N(3)where:K = constant, often called consistency index, andN = a material parameter generally called the power lawindex. It is equal to 1.0 for Newtonian fluids andgenerally between 0.18 and 0.33 for compounded rub-bers or elastomers, or both, with
23、some exceptions.Most non-Newtonian fluids follow the relationship in Eq 3for at least short ranges of the shear rate variable. Eq 3 isgenerally used in its logarithmic form, as:log! 5 logK!1Nlog! (4)3.1.10 corrected shear stress (w) the shear stress at thewall of the capillary die; it is calculated
24、from the apparent shearstress by applying the Bagley correction E in Eq. 5 for energylosses at the entrance and exit of the die.3.1.10.1 DiscussionThe Bagley correction, often termed“end effect,” is normally applied as though it were an addi-tional length of capillary, in terms of an added L/D ratio
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTM D5099 08 2017 Standard Test Methods for Rubber Measurement of Processing Properties Using Capillary Rheometry

链接地址:http://www.mydoc123.com/p-286900.html