ASTM D4937-96(2017) Standard Test Method for p-Phenylenediamine Antidegradants Purity by Gas Chromatography.pdf
《ASTM D4937-96(2017) Standard Test Method for p-Phenylenediamine Antidegradants Purity by Gas Chromatography.pdf》由会员分享,可在线阅读,更多相关《ASTM D4937-96(2017) Standard Test Method for p-Phenylenediamine Antidegradants Purity by Gas Chromatography.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: D4937 96 (Reapproved 2017)Standard Test Method forp-Phenylenediamine Antidegradants Purity by GasChromatography1This standard is issued under the fixed designation D4937; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision,
2、 the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the purityof Class I, II, and III p-phenylenediamine (PPD) a
3、ntidegradantsas described in Classification D4676 by gas chromatography(GC) detection and area normalization for data reduction.1.2 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.3 This standard does not purport to address a
4、ll of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.4 This international standard was developed in accor-dance w
5、ith internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standar
6、ds:2D3853 Terminology Relating to Rubber and RubberLaticesAbbreviations for Chemicals Used in Com-poundingD4483 Practice for Evaluating Precision for Test MethodStandards in the Rubber and Carbon Black ManufacturingIndustriesD4676 Classification for Rubber Compounding MaterialsAntidegradantsE260 Pra
7、ctice for Packed Column Gas Chromatography2.2 ISO Standard:3ISO 6472 Rubber Compounding IngredientsAbbreviations3. Terminology3.1 Definitions:3.1.1 area normalization, na method of calculating thepercent composition by measuring the area of each observedpeak and dividing each peak area by the total
8、area. Thisassumes that all peaks are eluted and that each component hasthe same detector response.3.1.2 lot sample, na production sample representative of astandard production unit, normally referred to as the sample.3.1.3 specimen, nthe actual material used in the analysis.It must be representative
9、 of the lot sample.3.2 AbbreviationsThe following abbreviations are in ac-cordance with Terminology D3853 and ISO 6472:3.2.1 77PDN,Nbis-(1,4-dimethylpentyl)-p-phenylenedi-amine.3.2.2 DTPDN,N-ditolyl-p-phenylenediamine.3.2.3 IPPDN-isopropyl-N-phenyl-p-phenylenediamine.3.2.4 PPDp-phenylenediamine.3.2.
10、5 6PPDN-(1,3 dimethylbutyl)-N-phenyl-p-phenylenediamine.4. Summary of Test Method4.1 The analysis is performed by temperature programmedGC utilizing either a packed column (Procedure A) or acapillary column (Procedure B). Quantification is achieved byarea normalization using a peak integrator or lab
11、oratory datasystem.5. Significance and Use5.1 This test method is designed to assess the relative purityof production PPDs. These additives are primarily used asantiozonants for tires and other rubber or polymeric products.5.2 Since the results of this test method are based on areanormalization, it
12、assumes that all components are eluted from1This test method is under the jurisdiction of ASTM Committee D11 on Rubberand Rubber-like Materials and is the direct responsibility of Subcommittee D11.11on Chemical Analysis.Current edition approved May 1, 2017. Published June 2017. Originallyapproved in
13、 1989. Last previous edition approved in 2012 as D4937 96 (2012).DOI: 10.1520/D4937-96R17.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Sum
14、mary page onthe ASTM website.3Available from the American National Standards Institute, 25 W. 43rd St., 4thFloor, New York, NY 10036.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordanc
15、e with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1the column and each component has th
16、e same detector re-sponse. Although this is not strictly true, the errors introducedare relatively small and much the same for all samples; thus,they can be ignored since the intent of the test method is toestablish relative purity.5.3 Although trace amounts of “low boilers” are present inproduction
17、 samples, they are disguised by the solvent peakwhen using packed columns (Procedure A).6. Interferences6.1 Utilizing the chromatographic conditions prescribedthere are no significant co-eluting peaks; however, degradationof column performance could result in interference problems.Thus, when using t
18、he packed column it is essential that thetotal system be capable of 5000 theoretical plates before beingused for this analysis. The evaluation of system efficiency isdescribed in 7.4.7. Apparatus7.1 Gas Chromatograph:7.1.1 Procedure A: Packed ColumnAny high-quality tem-perature programmed gas chroma
19、tograph equipped with athermal conductivity detector (see Note 1) is sufficient for thisanalysis. Refer to Practice E260 for general gas chromatogra-phy practices.NOTE 1Although a thermal conductivity detector is recommended, aflame ionization detector can be used if appropriate adjustment is made f
20、orflow rate and specimen size. Since this probably would involve using asmaller diameter column, the adjustment in flow and injection volumeshould be proportional to the cross-sectional area of the column. Aprocedure for this calculation is included at the end of Section 9.7.1.2 Procedure B: Capilla
21、ry ColumnA temperature pro-grammable unit with flame ionization detector (FID) equippedfor capillary columns. When utilizing the full capillary col-umns (0.25 mm), a split injection system is required; howevera “cold on-column” injector is preferred for the wide bore(0.53 mm) capillaries. The FID sh
22、ould have sufficient sensitiv-ity to give a minimum peak height response of 30 V for 0.1mass % of 6PPD when operated at the stated conditions.Background noise at these conditions is not to exceed 3 V.7.2 Gas Chromatographic Columns:7.2.1 Packed Column for Procedure A1.828 m 6.35 mm(6 ft 14 in.) outs
23、ide diameter 4 mm (0.16 in.) insidediameter glass columns packed with 10 % methyl silicone fluid(100 %) on 80/100 mesh acid washed and silanized diatomitesupport. The column should be conditioned with a helium flowof approximately 20 cm3/min by programming from ambienttemperature to 350C at the rate
24、 of 2 to 3C/min and holdingat 350C overnight with the detector disconnected.7.2.2 Capillary Column for Procedure B(1) 30 m 0.25mm ID fused silica capillary, internally coated to a filmthickness of 0.25 m (bonded) with methyl silicone; (2)15m 0.53 mm fused silica (megabore) capillary with 3.0 mbonded
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTM D4937 96 2017 Standard Test Method for Phenylenediamine Antidegradants Purity by Gas Chromatography

链接地址:http://www.mydoc123.com/p-286892.html