2020年天津市高考数学试卷及答案解析.docx
《2020年天津市高考数学试卷及答案解析.docx》由会员分享,可在线阅读,更多相关《2020年天津市高考数学试卷及答案解析.docx(21页珍藏版)》请在麦多课文档分享上搜索。
1、试 卷 第 1页 , 总 21页外 装 订 线 学校:_姓名:_班级 :_考号:_ 内 装 订 线 绝密启用前2020年天津市高考数学试卷试卷副标题考 试 范 围 : xxx; 考 试 时 间 : 100分 钟 ; 命 题 人 : xxx学 校 :_姓 名 : _班 级 : _考 号 : _题 号 一 二 三 总 分得 分注 意 事 项 :1 答 题 前 填 写 好 自 己 的 姓 名 、 班 级 、 考 号 等 信 息 $2 请 将 答 案 正 确 填 写 在 答 题 卡 上第 I 卷 ( 选 择 题 )请 点 击 修 改 第 I卷 的 文 字 说 明 评 卷 人 得 分 一 、 单 选 题
2、1 设 全 集 3, 2, 1,0,1,2,3U , 集 合 1,0,1,2, 3,0,2,3A B , 则 UA B ( )A 3,3 B 0,2 C 1,1D 3, 2, 1,1,3 【 答 案 】 C 【 解 析 】【 分 析 】首 先 进 行 补 集 运 算 , 然 后 进 行 交 集 运 算 即 可 求 得 集 合 的 运 算 结 果 .【 详 解 】由 题 意 结 合 补 集 的 定 义 可 知 : U 2, 1,1B , 则 U 1,1A B .故 选 : C.【 点 睛 】本 题 主 要 考 查 补 集 运 算 , 交 集 运 算 , 属 于 基 础 题 . 2 设 aR ,
3、则 “ 1a ”是 “ 2a a ”的 ( )A 充 分 不 必 要 条 件 B 必 要 不 充 分 条 件C 充 要 条 件 D 既 不 充 分 也 不 必 要 条 件【 答 案 】 A 试 卷 第 2页 , 总 21页 外 装 订 线 请不要在装订 线内答题 内 装 订 线 【 解 析 】【 分 析 】首 先 求 解 二 次 不 等 式 , 然 后 结 合 不 等 式 的 解 集 即 可 确 定 充 分 性 和 必 要 性 是 否 成 立 即 可 .【 详 解 】求 解 二 次 不 等 式 2a a 可 得 : 1a 或 0a ,据 此 可 知 : 1a 是 2a a 的 充 分 不 必
4、要 条 件 .故 选 : A.【 点 睛 】本 题 主 要 考 查 二 次 不 等 式 的 解 法 , 充 分 性 和 必 要 性 的 判 定 , 属 于 基 础 题 . 3 函 数 24 1xy x 的 图 象 大 致 为 ( )A BC D 【 答 案 】 A【 解 析 】【 分 析 】由 题 意 首 先 确 定 函 数 的 奇 偶 性 , 然 后 考 查 函 数 在 特 殊 点 的 函 数 值 排 除 错 误 选 项 即 可 确 定函 数 的 图 象 .【 详 解 】由 函 数 的 解 析 式 可 得 : 24 1xf x f xx , 则 函 数 f x 为 奇 函 数 , 其 图 象
5、 关于 坐 标 原 点 对 称 , 选 项 CD错 误 ; 当 1x 时 , 4 2 01 1y , 选 项 B错 误 .故 选 : A.【 点 睛 】 试 卷 第 3页 , 总 21页外 装 订 线 学校:_姓名:_班级 :_考号:_ 内 装 订 线 函 数 图 象 的 识 辨 可 从 以 下 方 面 入 手 : (1)从 函 数 的 定 义 域 , 判 断 图 象 的 左 右 位 置 ; 从 函 数的 值 域 , 判 断 图 象 的 上 下 位 置 (2)从 函 数 的 单 调 性 , 判 断 图 象 的 变 化 趋 势 (3)从 函 数的 奇 偶 性 , 判 断 图 象 的 对 称 性
6、(4)从 函 数 的 特 征 点 , 排 除 不 合 要 求 的 图 象 利 用 上 述 方法 排 除 、 筛 选 选 项 4 从 一 批 零 件 中 抽 取 80 个 , 测 量 其 直 径 ( 单 位 : mm) , 将 所 得 数 据 分 为 9 组 : 5.31,5.33 , 5.33,5.35 , , 5.45,5.47 , 5.47,5.49 , 并 整 理 得 到 如 下 频 率 分 布 直 方图 , 则 在 被 抽 取 的 零 件 中 , 直 径 落 在 区 间 5.43,5.47)内 的 个 数 为 ( ) A 10 B 18 C 20 D 36【 答 案 】 B【 解 析
7、】【 分 析 】根 据 直 方 图 确 定 直 径 落 在 区 间 5.43,5.47 之 间 的 零 件 频 率 , 然 后 结 合 样 本 总 数 计 算 其个 数 即 可 .【 详 解 】根 据 直 方 图 , 直 径 落 在 区 间 5.43,5.47 之 间 的 零 件 频 率 为 : 6.25 5.00 0.02 0.225 ,则 区 间 5.43,5.47 内 零 件 的 个 数 为 : 80 0.225 18 .故 选 : B.【 点 睛 】本 题 主 要 考 查 频 率 分 布 直 方 图 的 计 算 与 实 际 应 用 , 属 于 中 等 题 .5 若 棱 长 为 2 3的
8、 正 方 体 的 顶 点 都 在 同 一 球 面 上 , 则 该 球 的 表 面 积 为 ( )A 12 B 24 C 36 D 144 试 卷 第 4页 , 总 21页 外 装 订 线 请不要在装订 线内答题 内 装 订 线 【 答 案 】 C【 解 析 】【 分 析 】求 出 正 方 体 的 体 对 角 线 的 一 半 , 即 为 球 的 半 径 , 利 用 球 的 表 面 积 公 式 , 即 可 得 解 .【 详 解 】这 个 球 是 正 方 体 的 外 接 球 , 其 半 径 等 于 正 方 体 的 体 对 角 线 的 一 半 ,即 2 2 22 3 2 3 2 3 32R ,所 以
9、, 这 个 球 的 表 面 积 为 2 24 4 3 36S R . 故 选 : C.【 点 睛 】本 题 考 查 正 方 体 的 外 接 球 的 表 面 积 的 求 法 , 求 出 外 接 球 的 半 径 是 本 题 的 解 题 关 键 , 属 于基 础 题 .求 多 面 体 的 外 接 球 的 面 积 和 体 积 问 题 , 常 用 方 法 有 : ( 1) 三 条 棱 两 两 互 相 垂 直时 , 可 恢 复 为 长 方 体 , 利 用 长 方 体 的 体 对 角 线 为 外 接 球 的 直 径 , 求 出 球 的 半 径 ; ( 2) 直棱 柱 的 外 接 球 可 利 用 棱 柱 的
10、上 下 底 面 平 行 , 借 助 球 的 对 称 性 , 球 心 为 上 下 底 面 外 接 圆 的圆 心 连 线 的 中 点 , 再 根 据 勾 股 定 理 求 球 的 半 径 ; ( 3) 如 果 设 计 几 何 体 有 两 个 面 相 交 , 可过 两 个 面 的 外 心 分 别 作 两 个 面 的 垂 线 , 垂 线 的 交 点 为 几 何 体 的 球 心 . 6 设 0.80.7 0.713 , , log 0.83a b c , 则 , ,a b c的 大 小 关 系 为 ( )A a b c B b a c C b c a D c a b 【 答 案 】 D【 解 析 】【 分
11、 析 】利 用 指 数 函 数 与 对 数 函 数 的 性 质 , 即 可 得 出 , ,a b c的 大 小 关 系 .【 详 解 】因 为 0.73 1a , 0.8 0.8 0.71 3 33b a ,0.7 0.7log 0.8 log 0.7 1c ,所 以 1c a b .故 选 : D. 试 卷 第 5页 , 总 21页外 装 订 线 学校:_姓名:_班级 :_考号:_ 内 装 订 线 【 点 睛 】本 题 考 查 的 是 有 关 指 数 幂 和 对 数 值 的 比 较 大 小 问 题 , 在 解 题 的 过 程 中 , 注 意 应 用 指 数 函数 和 对 数 函 数 的 单
12、调 性 , 确 定 其 对 应 值 的 范 围 .比 较 指 对 幂 形 式 的 数 的 大 小 关 系 , 常 用 方 法 :( 1) 利 用 指 数 函 数 的 单 调 性 : xy a , 当 1a 时 , 函 数 递 增 ; 当 0 1a 时 , 函 数 递减 ;( 2) 利 用 对 数 函 数 的 单 调 性 : logay x , 当 1a 时 , 函 数 递 增 ; 当 0 1a 时 , 函数 递 减 ;( 3) 借 助 于 中 间 值 , 例 如 : 0或 1等 . 7 设 双 曲 线 C的 方 程 为 2 22 2 1( 0, 0)x y a ba b , 过 抛 物 线 2
13、 4y x 的 焦 点 和 点 (0, )b 的直 线 为 l 若 C的 一 条 渐 近 线 与 l平 行 , 另 一 条 渐 近 线 与 l垂 直 , 则 双 曲 线 C的 方 程 为( )A 2 2 14 4x y B 22 14yx C 2 2 14x y D 2 2 1x y 【 答 案 】 D【 解 析 】【 分 析 】 由 抛 物 线 的 焦 点 1,0 可 求 得 直 线 l的 方 程 为 1yx b , 即 得 直 线 的 斜 率 为 b , 再 根据 双 曲 线 的 渐 近 线 的 方 程 为 by xa , 可 得 bb a , 1bb a 即 可 求 出 ,a b,得 到
14、 双 曲 线 的 方 程 【 详 解 】由 题 可 知 , 抛 物 线 的 焦 点 为 1,0 , 所 以 直 线 l的 方 程 为 1yx b , 即 直 线 的 斜 率 为 b ,又 双 曲 线 的 渐 近 线 的 方 程 为 by xa , 所 以 bb a , 1bb a , 因 为 0, 0a b ,解 得 1, 1a b 故 选 : D【 点 睛 】本 题 主 要 考 查 抛 物 线 的 简 单 几 何 性 质 , 双 曲 线 的 几 何 性 质 , 以 及 直 线 与 直 线 的 位 置 关 系的 应 用 , 属 于 基 础 题 试 卷 第 6页 , 总 21页 外 装 订 线
15、请不要在装订 线内答题 内 装 订 线 8 已 知 函 数 ( ) sin 3f x x 给 出 下 列 结 论 : ( )f x 的 最 小 正 周 期 为 2 ; 2f 是 ( )f x 的 最 大 值 ; 把 函 数 siny x 的 图 象 上 所 有 点 向 左 平 移 3 个 单 位 长 度 , 可 得 到 函 数 ( )y f x 的 图象 其 中 所 有 正 确 结 论 的 序 号 是 ( )A B C D 【 答 案 】 B【 解 析 】【 分 析 】对 所 给 选 项 结 合 正 弦 型 函 数 的 性 质 逐 一 判 断 即 可 .【 详 解 】因 为 ( ) sin(
16、)3f x x , 所 以 周 期 2 2T , 故 正 确 ;5 1( ) sin( ) sin 12 2 3 6 2f , 故 不 正 确 ;将 函 数 siny x 的 图 象 上 所 有 点 向 左 平 移 3 个 单 位 长 度 , 得 到 sin( )3y x 的 图 象 , 故 正 确 .故 选 : B.【 点 晴 】本 题 主 要 考 查 正 弦 型 函 数 的 性 质 及 图 象 的 平 移 , 考 查 学 生 的 数 学 运 算 能 力 , 逻 辑 分 析 那能 力 , 是 一 道 容 易 题 .9 已 知 函 数 3, 0,( ) , 0.x xf x x x 若 函 数
17、 2( ) ( ) 2 ( )g x f x kx x k R 恰 有 4 个零 点 , 则 k 的 取 值 范 围 是 ( ) A 1, (2 2, )2 B 1, (0,2 2)2 C ( ,0) (0,2 2) D ( ,0) (2 2, ) 【 答 案 】 D【 解 析 】 试 卷 第 7页 , 总 21页外 装 订 线 学校:_姓名:_班级 :_考号:_ 内 装 订 线 【 分 析 】由 (0) 0g , 结 合 已 知 , 将 问 题 转 化 为 | 2|y kx 与 ( )( ) | |f xh x x 有 3个 不 同 交 点 ,分 0, 0, 0k k k 三 种 情 况 ,
18、 数 形 结 合 讨 论 即 可 得 到 答 案 .【 详 解 】注 意 到 (0) 0g , 所 以 要 使 ( )g x 恰 有 4个 零 点 , 只 需 方 程 ( )| 2| | |f xkx x 恰 有 3个 实根即 可 , 令 ( )h x ( )| |f xx , 即 | 2|y kx 与 ( )( ) | |f xh x x 的 图 象 有 3个 不 同 交 点 .因 为 2, 0( )( ) 1, 0 x xf xh x x x ,当 0k 时 , 此 时 2y , 如 图 1, 2y 与 ( )( ) | |f xh x x 有 1个 不 同 交 点 , 不 满 足 题 意
19、 ;当 k 0 时 , 如 图 2, 此 时 | 2|y kx 与 ( )( ) | |f xh x x 恒 有 3个 不 同 交 点 , 满 足 题 意 ;当 0k 时 , 如 图 3, 当 2y kx 与 2y x= 相 切 时 , 联 立 方 程 得 2 2 0 x kx , 令 0 得 2 8 0k , 解 得 2 2k ( 负 值 舍 去 ) , 所 以 2 2k .综 上 , k 的 取 值 范 围 为 ( ,0) (2 2, ) .故 选 : D. 试 卷 第 8页 , 总 21页 外 装 订 线 请不要在装订 线内答题 内 装 订 线 【 点 晴 】本 题 主 要 考 查 函
20、数 与 方 程 的 应 用 , 考 查 数 形 结 合 思 想 , 转 化 与 化 归 思 想 , 是 一 道 中 档 题 .第 II 卷 ( 非 选 择 题 )请 点 击 修 改 第 II卷 的 文 字 说 明评 卷 人 得 分 二 、 填 空 题10 i是 虚 数 单 位 , 复 数 82 ii _ 【 答 案 】 3 2i【 解 析 】【 分 析 】将 分 子 分 母 同 乘 以 分 母 的 共 轭 复 数 , 然 后 利 用 运 算 化 简 可 得 结 果 .【 详 解 】 8 28 15 10 3 22 2 2 5i ii i ii i i .故 答 案 为 : 3 2i .【 点
21、睛 】 本 题 考 查 复 数 的 四 则 运 算 , 属 于 基 础 题 . 试 卷 第 9页 , 总 21页外 装 订 线 学校:_姓名:_班级 :_考号:_ 内 装 订 线 11 在 522x x 的 展 开 式 中 , 2x 的 系 数 是 _【 答 案 】 10【 解 析 】【 分 析 】写 出 二 项 展 开 式 的 通 项 公 式 , 整 理 后 令 x的 指 数 为 2, 即 可 求 出 【 详 解 】因 为 522x x 的 展 开 式 的 通 项 公 式 为 5 5 3 1 5 522 2 0,1,2,3,4,5rr r r r rrT C x C x rx , 令 5 3
22、 2r , 解 得 1r 所 以 2x 的 系 数 为 15 2 10C 故 答 案 为 : 10【 点 睛 】本 题 主 要 考 查 二 项 展 开 式 的 通 项 公 式 的 应 用 , 属 于 基 础 题 12 已 知 直 线 3 8 0 x y 和 圆 2 2 2( 0)x y r r 相 交 于 ,A B两 点 若 | | 6AB ,则 r 的 值 为 _【 答 案 】 5 【 解 析 】【 分 析 】根 据 圆 的 方 程 得 到 圆 心 坐 标 和 半 径 , 由 点 到 直 线 的 距 离 公 式 可 求 出 圆 心 到 直 线 的 距 离 d ,进 而 利 用 弦 长 公 式
23、 2 2| | 2AB r d , 即 可 求 得 r 【 详 解 】因 为 圆 心 0,0 到 直 线 3 8 0 x y 的 距 离 8 41 3d ,由 2 2| | 2AB r d 可 得 2 26 2 4r , 解 得 =5r 故 答 案 为 : 5【 点 睛 】本 题 主 要 考 查 圆 的 弦 长 问 题 , 涉 及 圆 的 标 准 方 程 和 点 到 直 线 的 距 离 公 式 , 属 于 基 础 题 13 已 知 甲 、 乙 两 球 落 入 盒 子 的 概 率 分 别 为 12 和 13 假 定 两 球 是 否 落 入 盒 子 互 不 影 响 , 试 卷 第 10页 , 总
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 天津市 高考 数学试卷 答案 解析
