【考研类试卷】考研数学二(线性代数)-试卷20及答案解析.doc
《【考研类试卷】考研数学二(线性代数)-试卷20及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学二(线性代数)-试卷20及答案解析.doc(9页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学二(线性代数)-试卷 20 及答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A 为 n 阶矩阵,A 2 =A,则下列成立的是( )(分数:2.00)A.A=OB.A=EC.若 A 不可逆,则 A=OD.若 A 可逆,则 A=E3.设 A=( 1 , 2 , m ),若对于任意不全为零的常数 k 1 ,k 2 ,k m ,皆有 k 1 1 +k 2 2 +k m m 0,则( )(分数:2.00)A.mnB.m=nC.存在 m 阶可逆阵 P,使得 AP=
2、D.若 AB=O,则 B=O4.设 1 , 2 , m 与 1 , 2 , s 为两个 n 维向量组,且 r( 1 , 2 , m )=r( 1 , 2 , s )=r,则( )(分数:2.00)A.两个向量组等价B.r( 1 , 2 , m , 1 , 2 , s )=rC.若向量组 1 , 2 , m 可由向量组 1 , 2 , s 线性表示,则两向量组等价D.两向量组构成的矩阵等价5.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2B. 1 +
3、2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 + 2 )D.AX=b 的通解为 k 1 1 +k 2 2 + 6.设 A 为 mn 阶矩阵,则方程组 AX=b 有唯一解的充分必要条件是( )(分数:2.00)A.r(A)=mB.r(A)=nC.A 为可逆矩阵D.r(A)=n 且 b 可由 A 的列向量组线性表示7.设三阶矩阵 A 的特征值为-1,1,2,其对应的特征向量为 1 , 2 , 3 ,令 P=(3 2 ,- 3 ,2 1 ),则 P -1 AP 等于( ) (分数:2.00)A.B.C.D.8.设 A,B 为 n 阶可逆矩阵,则( )(分数:2.00)A.存在可逆矩
4、阵 P,使得 P -1 AP=BB.存在正交矩阵 Q,使得 Q T AQ=BC.A,B 与同一个对角矩阵相似D.存在可逆矩阵 P,Q,使得 PAQ=B二、填空题(总题数:3,分数:6.00)9.设 A,B 都是三阶矩阵,A 相似于 B,且E-A=E-2A=E-3A=0,则B -1 +2E= 1(分数:2.00)填空项 1:_10.设 A= (分数:2.00)填空项 1:_11.设 1 , 2 , 3 是三阶矩阵 A 的三个不同特征值, 1 , 2 , 3 分别是属于特征值 1 , 2 , 3 的特征向量,若 1 ,A( 1 + 2 ),A 2 ( 1 + 2 + 3 )线性无关,则 1 , 2
5、 , 3 满足 1(分数:2.00)填空项 1:_三、解答题(总题数:17,分数:38.00)12.解答题解答应写出文字说明、证明过程或演算步骤。_13.设 A 是正交矩阵,且A_14.设 A,B 为三阶矩阵,且 AB,且 1 =1, 2 =2 为 A 的两个特征值,B=2,求 (分数:2.00)_设 A=E- T ,其中 a 为 n 维非零列向量证明:(分数:4.00)(1).A 2 =A 的充分必要条件是 g 为单位向量;(分数:2.00)_(2).当 a 是单位向量时 A 为不可逆矩阵(分数:2.00)_15.设 A 是 n(n3)阶矩阵,证明:(A * ) * =A n-2 A(分数:
6、2.00)_16.设 1 , 2 , n 为 n 个 n 维向量,证明: 1 , 2 , n 线性无关的充分必要条件是任一 n 维向量总可由 1 , 2 , n 线性表示(分数:2.00)_17.A,B 为 n 阶矩阵且 r(A)+r(B)_18.证明:r(AB)rainr(A),r(B)(分数:2.00)_19.设 A 是 mn 阶矩阵,且非齐次线性方程组 AX=b 满足 r(A)=r( (分数:2.00)_设矩阵 A= (分数:4.00)(1).若 A 有一个特征值为 3,求 a;(分数:2.00)_(2).求可逆矩阵 P,使得 p T A 2 P 为对角矩阵(分数:2.00)_20.设
7、A 为三阶矩阵,且有三个互异的正的特征值,设矩阵 B=(A * ) 2 -4E 的特征值为 0,5,32求 A -1 的特征值并判断 A -1 是否可对角化(分数:2.00)_设 A= 的一个特征值为 1 =2,其对应的特征向量为 1 = (分数:4.00)(1).求常数 a,b,c;(分数:2.00)_(2).判断 A 是否可对角化,若可对角化,求可逆矩阵 P,使得 P -1 AP 为对角矩阵若不可对角化,说明理由(分数:2.00)_21.设 A= (分数:2.00)_22.设 A 为三阶方阵,A 的每行元素之和为 5,AX=0 的通解为 ,设 = (分数:2.00)_23. (分数:2.0
8、0)_24.设 A 为 mn 阶实矩阵,且 r(A)=n证明:A T T A 的特征值全大于零(分数:2.00)_25.设二次型 f=2x 1 2 +x 2 2 +ax 3 2 +2x 1 x 2 +2bx 1 3 +2x 2 x 3 经过正交变换 X=QY 化为标准形 f=y 1 2 +y 2 2 +4y 3 2 ,求参数 a,b 及正交矩阵 Q(分数:2.00)_考研数学二(线性代数)-试卷 20 答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 A 为
9、 n 阶矩阵,A 2 =A,则下列成立的是( )(分数:2.00)A.A=OB.A=EC.若 A 不可逆,则 A=OD.若 A 可逆,则 A=E 解析:解析:因为 A 2 =A,所以 A(E-A)=O,由矩阵秩的性质得 r(A)+r(E-A)=n,若 A 可逆,则 r(A)=n,所以 r(E-A)=0,A=E,选(D)3.设 A=( 1 , 2 , m ),若对于任意不全为零的常数 k 1 ,k 2 ,k m ,皆有 k 1 1 +k 2 2 +k m m 0,则( )(分数:2.00)A.mnB.m=nC.存在 m 阶可逆阵 P,使得 AP=D.若 AB=O,则 B=O 解析:解析:因为对任
10、意不全为零的常数 k 1 ,k 2 ,k m ,有 k 1 1 +k 2 2 +k m m 0,所以向量组 1 , 2 , m 线性无关,即方程组 AX=0 只有零解,故若 AB=O,则 B=O,选(D)4.设 1 , 2 , m 与 1 , 2 , s 为两个 n 维向量组,且 r( 1 , 2 , m )=r( 1 , 2 , s )=r,则( )(分数:2.00)A.两个向量组等价B.r( 1 , 2 , m , 1 , 2 , s )=rC.若向量组 1 , 2 , m 可由向量组 1 , 2 , s 线性表示,则两向量组等价D.两向量组构成的矩阵等价解析:解析:不妨设向量组 1 ,
11、2 , m 的极大线性无关组为 1 , 2 , r ,向量组 1 , 2 , s 的极大线性无关组为 1 , 2 , r ,若 1 , 2 , m 可由 1 , 2 , s 线性表示则 1 , 2 , r ,也可由 1 , 2 , r 线性表示,若 1 , 2 , r 不可由 1 , 2 , r 线性表示则 1 , 2 , s 也不可由 1 , 2 , m 线性表示,所以两向量组秩不等,矛盾,选(C)5.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2
12、B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 + 2 ) D.AX=b 的通解为 k 1 1 +k 2 2 + 解析:解析:因为非齐次线性方程组 AX=b 的解不唯一,所以 r(A) *0,所以 r(A)=n-1, 2- 1为齐次线性方程组 AX=0 的基础解系,选(C)6.设 A 为 mn 阶矩阵,则方程组 AX=b 有唯一解的充分必要条件是( )(分数:2.00)A.r(A)=mB.r(A)=nC.A 为可逆矩阵D.r(A)=n 且 b 可由 A 的列向量组线性表示 解析:解析:方程组 AX=b 有解的充分必要条件是 6 可由矩阵 A 的列向量组线性表示,在
13、方程组 AX=b 有解的情形下,其有唯一解的充分必要条件是 r(A)=n,故选(D)7.设三阶矩阵 A 的特征值为-1,1,2,其对应的特征向量为 1 , 2 , 3 ,令 P=(3 2 ,- 3 ,2 1 ),则 P -1 AP 等于( ) (分数:2.00)A.B.C. D.解析:解析:显然 3 2 ,- 3 ,2 1 也是特征值 1,2,-1 的特征向量,所以 P -1 AP= 8.设 A,B 为 n 阶可逆矩阵,则( )(分数:2.00)A.存在可逆矩阵 P,使得 P -1 AP=BB.存在正交矩阵 Q,使得 Q T AQ=BC.A,B 与同一个对角矩阵相似D.存在可逆矩阵 P,Q,使
14、得 PAQ=B 解析:解析:因为 A,B 都是可逆矩阵,所以 A,B 等价,即存在可逆矩阵 P,Q,使得 PAQ=B 选(D)二、填空题(总题数:3,分数:6.00)9.设 A,B 都是三阶矩阵,A 相似于 B,且E-A=E-2A=E-3A=0,则B -1 +2E= 1(分数:2.00)填空项 1:_ (正确答案:正确答案:60)解析:解析:因为E-A=E-2A=E-3A=0,所以 A 的三个特征值为 ,1,又 AB,所以 B的特征值为 10.设 A= (分数:2.00)填空项 1:_ (正确答案:正确答案:1)解析:解析:BA=O11.设 1 , 2 , 3 是三阶矩阵 A 的三个不同特征值
15、, 1 , 2 , 3 分别是属于特征值 1 , 2 , 3 的特征向量,若 1 ,A( 1 + 2 ),A 2 ( 1 + 2 + 3 )线性无关,则 1 , 2 , 3 满足 1(分数:2.00)填空项 1:_ (正确答案:正确答案: 2 3 0)解析:解析:令 x 1 1 +x 2 A( 1 + 2 )+x 3 A 2 ( 1 + 2 + 3 )=0,即 (x 1 + 1 x 2 + 1 2 x 3 ) 1 +( 2 x 2 + 2 2 x 3 ) 2 + 3 2 x 3 3 =0,则有 x 1 + 1 x 2 + 1 2 x 3 =0, 2 x 2 + 2 2 x 3 =0, 3 2
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 20 答案 解析 DOC
