【考研类试卷】考研数学三(线性代数)模拟试卷96及答案解析.doc
《【考研类试卷】考研数学三(线性代数)模拟试卷96及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(线性代数)模拟试卷96及答案解析.doc(9页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)模拟试卷 96 及答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:5,分数:10.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.AB=0,A,B 是两个非零矩阵,则(分数:2.00)A.A 的列向量组线性相关B 的行向量组线性相关B.A 的列向量组线性相关B 的列向量组线性相关C.A 的行向量组线性相关B 的行向量组线性相关D.A 的行向量组线性相关B 的列向量组线性相关3.设 1 , 2 , s 都是 n 维向量,A 是 mn 矩阵,下列选项中正确的是( )(分数:2.00)A.若 1 , 2 , s
2、线性相关,则 A 1 ,A 2 ,A s 线性相关B.若 1 , 2 , s 线性相关,则 A 1 ,A 2 ,A s 线性无关C.若 1 , 2 , s 线性无关,则 A 1 ,A 2 ,A s 线性相关D.若 1 , 2 , s 线性无关,则 A 1 ,A 2 ,A s 线性无关4. 1 , 2 , 3 , 线性无关,而 1 , 2 , 3 , 线性相关,则(分数:2.00)A. 1 , 2 , 3 ,+ 线性相关B. 1 , 2 , 3 ,c+ 线性无关C. 1 , 2 , 3 ,+c 线性相关D. 1 , 2 , 3 ,+c 线性无关5.设 1 , 2 , 3 线性无关,则( )线性无
3、关:(分数:2.00)A. 1 + 2 , 2 + 3 , 3 一 1 B. 1 + 2 , 2 + 3 , 1 +2 2 + 3 C. 1 +2 2 ,2 2 +3 3 ,3 3 + 1 D. 1 + 2 + 3 ,2 1 一 3 2 +22 3 ,3 1 +5 2 5 3 二、填空题(总题数:2,分数:4.00)6.已知 1 , 2 , 3 线性无关 1 +t 2 , 2 +2t 3 , 3 +4t 1 线性相关.则实数 t 等于 1(分数:2.00)填空项 1:_7.设 A 为 3 阶正交矩阵,它的第一行第一列位置的元素是 1,又设 =(1,0,0) T ,则方程组 AX= 的解为 1(
4、分数:2.00)填空项 1:_三、解答题(总题数:25,分数:50.00)8.解答题解答应写出文字说明、证明过程或演算步骤。_9.已知 可用 1 , 2 , s 线性表示,但不可用 1 , 2 , s-1 线性表示.证明 (1) s 不可用 1 , 2 , s-1 线性表示; (2) s 可用 1 , 2 , s-1 , 线性表示(分数:2.00)_10.已知(2,1,1,1) T ,(2,1,a,a) T ,(3,2,1,a) T ,(4,3,2,1) T 线性相关,并且 a1,求 a(分数:2.00)_11.设 1 =(1,1,1,3) T , 2 =(一 1,一 3,5,1) T , 3
5、 =(3,2,一 1,p+2) T , 4 =(一2,一 6,1 0,p) T .P 为什么数时, 1 , 2 , 3 , 4 线性相关?此时求 r( 1 , 2 , 3 , 4 )和写出一个最大无关组(分数:2.00)_12.已知 1 , 2 都是 3 阶矩阵 A 的特征向量,特征值分别为一 1 和 1,又 3 维向量 3 满足 A 3 = 2 + 3 证明 1 , 2 , 3 线性无关(分数:2.00)_13.设 n 维向量组 1 , 2 , s 线性相关,并且 1 0,证明存在 1ks,使得 k 可用 1 , k-1 线性表示(分数:2.00)_14.设 A 为 n 阶矩阵, 0 0,满
6、足 A 0 =0,向量组 1 , 2 满足 A 1 = 0 ,A 2 2 = 0 证明 0 , 1 , 2 线性无关(分数:2.00)_15.设 A 为 n 阶矩阵, 1 为 AX=0 的一个非零解,向量组 1 , 2 , s 满足 A i-1 i = 1 (j=2,3,s)证明 1 , 2 , s 线性无关(分数:2.00)_16.设 A 是 n 阶矩阵,k 为正整数, 是齐次方程组 A k X=0 的一个解,但是 A k-1 0证明,A,A k-1 线性无关(分数:2.00)_17.设 1 , 2 , s 线性无关, i = I + I+1 ,i=1,s1, s = S + 1 判断 1
7、2 , s 线性相关还是线性无关?(分数:2.00)_设 1 , 2 , 3 , 4 线性无关, 1 =2 1 + 3 + 4 , 2 =2 1 + 2 + 3 , 3 = 2 一 4 , 4 = 3 + 4 , 5 = 2 + 3 (分数:4.00)(1).求 r( 1 , 2 , 3 , 4 , 5 );(分数:2.00)_(2).求 1 , 2 , 3 , 4 , 5 的一个最大无关组(分数:2.00)_18.设 1 , 2 , 3 都是 n 维非零向量,证明: 1 , 2 , 3 线性无关 (分数:2.00)_19.设 1 , 2 , s , 都是 n 维向量,证明: (分数:2.00
8、)_20.设 A 是 mn 矩阵证明: r(A)=1 (分数:2.00)_21.设 1 , 2 , s 和 1 2 , t 都是 n 维向量组,证明 r( 1 , 2 , s , 1 2 , t )r( 1 , 2 , s )+r( 1 2 , t ) 设 A 和 B 是两个行数相同的矩阵,r(AB)r(A)+r(B) 设 A 和 B 是两个列数相同的矩阵, 表示 A 在上,B在下构造的矩阵证明 (分数:2.00)_22.证明 r(A+B)r(A)+r(B)(分数:2.00)_23.设 A 是 n 阶矩阵,满足(A 一 aE)(AbE)=0,其中数 ab证明:r(AaE)+r(AbE)=n(分
9、数:2.00)_24.设 A 是 n 阶矩阵,证明 (分数:2.00)_25.设 1 , 2 , r ,和 1 2 , s 是两个线性无关的 n 维向量证明:向量组 1 , 2 , r ; 1 2 , s 线性相关甘存在非零向量 r,它既可用 1 , 2 , r 线性表示,又可用 1 2 , s 线性表示(分数:2.00)_26.设 A=( 1 , 2 , n )是实矩阵,证明 A T A 是对角矩阵 (分数:2.00)_27.设 A 为实矩阵,证明 r(A T A)=r(A)(分数:2.00)_28.设 1 , 2 , n 是一组两两正交的非零向量,证明它们线性无关(分数:2.00)_29.
10、设 1 , 2 , s 和 1 2 , t 是两个线性无关的 n 维实向量组,并且每个 i 和 j 都正交,证明 1 , 2 , s , 1 2 , t 线性无关(分数:2.00)_30.设 A 为 n 阶正交矩阵, 和 都是 n 维实向量,证明:(1)内积(,)=(A,A)(2)长度=A(分数:2.00)_31.设 A 是 n 阶非零实矩阵(n2),并且 A T =A * ,证明 A 是正交矩阵(分数:2.00)_考研数学三(线性代数)模拟试卷 96 答案解析(总分:64.00,做题时间:90 分钟)一、选择题(总题数:5,分数:10.00)1.选择题下列每题给出的四个选项中,只有一个选项符
11、合题目要求。(分数:2.00)_解析:2.AB=0,A,B 是两个非零矩阵,则(分数:2.00)A.A 的列向量组线性相关B 的行向量组线性相关 B.A 的列向量组线性相关B 的列向量组线性相关C.A 的行向量组线性相关B 的行向量组线性相关D.A 的行向量组线性相关B 的列向量组线性相关解析:3.设 1 , 2 , s 都是 n 维向量,A 是 mn 矩阵,下列选项中正确的是( )(分数:2.00)A.若 1 , 2 , s 线性相关,则 A 1 ,A 2 ,A s 线性相关 B.若 1 , 2 , s 线性相关,则 A 1 ,A 2 ,A s 线性无关C.若 1 , 2 , s 线性无关,
12、则 A 1 ,A 2 ,A s 线性相关D.若 1 , 2 , s 线性无关,则 A 1 ,A 2 ,A s 线性无关解析:解析:本题考的是线性相关性的判断问题,可以用定义说明(A)的正确性,做法如下: 因为 1 , 2 , s 线性相关,所以存在不全为 0 的数 c 1 ,c 2 ,c s 使得 c 1 1 +c 1 2 +c s s =0,用 A 左乘等式两边,得 c 1 A 1 +c 1 A 2 +c s A s =0,于是 A 1 ,A 2 ,A s 线性相关但是用秩来解此题,则更加简单透彻只要应用两个基本性质,它们是: 1 1 , 2 , s 线性无关 4. 1 , 2 , 3 ,
13、线性无关,而 1 , 2 , 3 , 线性相关,则(分数:2.00)A. 1 , 2 , 3 ,+ 线性相关B. 1 , 2 , 3 ,c+ 线性无关C. 1 , 2 , 3 ,+c 线性相关D. 1 , 2 , 3 ,+c 线性无关 解析:解析:由于 1 , 2 , 3 , 线性无关, 1 , 2 , 3 是线性无关的于是根据定理32, 1 , 2 , 3 ,c+(或 +c)线性相关与否取决于 c+(或 +c)可否用 1 , 2 , 3 线性表示 条件说明 不能由 1 , 2 , 3 线性表示,而 可用 1 , 2 , 3 线性表示 c+ 可否用 1 , 2 , 3 线性表示取决于 c,当
14、c=0 时 c+= 可用 1 , 2 , 3 线性表示;c0 时 c+ 不可用 1 , 2 , 3 线性表示c 不确定,(A),(B)都不能选 而 +c总是不可用 1 , 2 , 3 线性表示的,因此(C)不对,(D)对5.设 1 , 2 , 3 线性无关,则( )线性无关:(分数:2.00)A. 1 + 2 , 2 + 3 , 3 一 1 B. 1 + 2 , 2 + 3 , 1 +2 2 + 3 C. 1 +2 2 ,2 2 +3 3 ,3 3 + 1 D. 1 + 2 + 3 ,2 1 一 3 2 +22 3 ,3 1 +5 2 5 3 解析:解析:容易看出 A 中的向量组的第 2 个减
15、去第 1 个等于第 3 个,所以相关B 组的前两个之和等于第 3 个,也相关于是 A 和 B 都可排除 现在只用判断 C 组是否相关(若相关,选 D,若无关,选 C) 1 +2 2 ,2 2 +3 3 ,3 3 + 1 对 1 , 2 , 3 的表示矩阵为 二、填空题(总题数:2,分数:4.00)6.已知 1 , 2 , 3 线性无关 1 +t 2 , 2 +2t 3 , 3 +4t 1 线性相关.则实数 t 等于 1(分数:2.00)填空项 1:_ (正确答案:正确答案:t=一 12)解析:解析:本题可以用定义做,但是表述比较哕嗦,用秩比较简单,证明 1 +t 2 , 2 +2t 3 , 3
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 96 答案 解析 DOC
