ASTM F2836-2018 Standard Practice for Gasket Constants for Bolted Joint Design.pdf
《ASTM F2836-2018 Standard Practice for Gasket Constants for Bolted Joint Design.pdf》由会员分享,可在线阅读,更多相关《ASTM F2836-2018 Standard Practice for Gasket Constants for Bolted Joint Design.pdf(12页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F2836 18Standard Practice forGasket Constants for Bolted Joint Design1This standard is issued under the fixed designation F2836; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in pa
2、rentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice determines room temperature gasket tight-ness design constants for pressurized bolted flanged connec-tions such as those designed in
3、accordance with the ASMEBoiler and Pressure Vessel Code.1.2 This practice applies mainly to all types of circulargasket products and facings typically used in process or powerplant pressure vessels, heat exchangers, and piping includingsolid metal, jacketed, spiral wound, and sheet-type gaskets. Asa
4、n optional extension of this practice, the maximum assemblystress for those gaskets may also be determined by thisprocedure.1.3 UnitsThe values stated in SI units are to be regardedas the standard, but other units may be included.1.4 This standard does not purport to address all of thesafety concern
5、s, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accor-dance with int
6、ernationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASME Standards:2ASM
7、E B16.5 Steel Pipe Flanges and Flanged FittingsASME B16.20 Metallic Gaskets for Pipe FlangesRing-Joint, Spiral-Wound, and JacketedASME B16.21 Nonmetallic Flat Gaskets for Pipe FlangesASME Boiler and Pressure Vessel Code Section VIII Divi-sion 1, Appendix 23. Terminology3.1 Definitions of Terms Speci
8、fic to This Standard:3.1.1 ASME Class 150, nrefers to the dimensions andpressure rating of Class 150 of standard flanges in ASMEStandard B16.5.3.1.2 flange rotation, nrotation of the flange face surfacesso that the gasket outside diameter (OD) is compressed morethan the gasket inside diameter (ID) w
9、hen the bolts aretightened to compress the gasket.3.1.3 gasket constants, nif a log-log plot of gasket stressversus tightness (Sg-Tp graph) is made and an analysis of thedata is performed in accord with this practice, then (see Fig. 1):(1) The value, Gb, is the stress intercept (at Tp =1)associated
10、with a regression of the Part A tightness data.(2) The value, a, is the slope associated with the PartAdataand combined values of Gb and a describe the seating orloading characteristic of a gasket and give an indication of thegasket capacity to develop tightness upon initial seating.(3) The value, G
11、s, is the stress intercept (at Tp =1)associated with Part B tightness data and values of Gs representthe gasket potential to maintain tightness after pressurizationand during operation and indicate the gaskets sensitivity tounloading excursions or susceptibility to crushing.(4) The combined effect o
12、f constants Gb and a is bestrepresented by the value of STp= Gb Tpacalculated fortypical values of Tp such as 100, 1000, or 10 000 where STptells us what the minimum gasket stress shall be to maintain aspecified level of minimum tightness.(5) The value, Gs, is an independent constant that repre-sent
13、s operation and it characterizes the gasket tightness sensi-tivity to operating bolt load reductions that occur duringpressurization or gasket creep or thermal disturbances.3.1.4 gasket contact area, Ag, ninitial (nominal) area ofthe gasket that is considered to be loaded by the flangesurfaces.3.1.5
14、 gasket stress, Sg, ngasket stress is the ratio of theapplied load by the fixture over the gasket contact area, Ag.3.1.6 gasket types, nfor this practice, it is convenient todifferentiate gasket styles as:(1) Sheet gasket materials typically from 0.5 to 5 mm thickcommonly in use and in which circula
15、r gasket samples are cut,1This practice is under the jurisdiction ofASTM Committee F03 on Gaskets andis the direct responsibility of Subcommittee F03.20 on Mechanical Test Methods.Current edition approved Aug. 1, 2018. Published November 2018. DOI:10.1520/F2836-18.2Available from American Society of
16、 Mechanical Engineers (ASME), ASMEInternational Headquarters, Two Park Ave., New York, NY 10016-5990, http:/www.asme.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with inter
17、nationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1such as compressed or beater-added fiber-reinfor
18、ced, flexiblegraphite and polytetrafluoroethylene (PTFE)-based sheet prod-ucts;(2) Preformed gaskets with a flat seal element that contactsthe raised faced flange surfaces as intended by themanufacturer, such as solid flat metal gaskets with and withoutnubbin, spiral wound gaskets, flat metal jacket
19、ed with nonme-tallic filler gasket, and so on;(3) Preformed gaskets with one or several cambered sealelements in which the nominal contact area is not obvious suchas solid metal oval rings, hollow metal rings, elastomerO-rings, corrugated gaskets, and so on; and(4) Formed-in-place sealing products s
20、uch as expandedPTFE rope and so on.3.1.7 known volumes, nvolume of the internal high-pressure chamber or volume of the external low-pressure leakcollection chamber used, respectively, in pressure decay orpressure rise methods to measure gasket specimen leaks.3.1.8 leakage rate, Lrm, ntotal rate of i
21、nternal fluidleakage around or through the gasket expressed as milligramsper second, Lrm, reduced to standard conditions.3.1.9 maximum assembly stress, Sc, nmaximum gasketstress found to achieve a minimum acceptable tightness whenthe gasket is unloaded to the minimum allowed stress level, S1,of the
22、procedure (see Section 13).3.1.10 maximum and minimum tightness, Tpmax andTpmin, nhighest and lowest level of tightness, Tp, achieved,respectively, during Part A and Part B of the test procedure.3.1.11 nominal pipe size, NPS, “d,”, nrefers to the nomi-nal pipe size in which “d” is the nominal size i
23、n inches, forexample, NPS 12 refers to standard 305-mm pipe.3.1.12 pressure decay method, nthis method measures, atregular intervals of time, the helium pressure decay of theinternal high-pressure chamber of known volume upstream ofthe gasket.3.1.13 pressure rise method, nthis method measures, atreg
24、ular intervals of time, the pressure rise of an externallow-pressure leak collection chamber of known volume built atthe external periphery of the gasket.3.1.14 range of gasket behavior possibilities, nvariousgasket behaviors ranging from tightness softening to extremetightness hardening are illustr
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMF28362018STANDARDPRACTICEFORGASKETCONSTANTSFORBOLTEDJOINTDESIGNPDF

链接地址:http://www.mydoc123.com/p-1243971.html