ASTM C687-2018 Standard Practice for Determination of Thermal Resistance of Loose-Fill Building Insulation.pdf
《ASTM C687-2018 Standard Practice for Determination of Thermal Resistance of Loose-Fill Building Insulation.pdf》由会员分享,可在线阅读,更多相关《ASTM C687-2018 Standard Practice for Determination of Thermal Resistance of Loose-Fill Building Insulation.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: C687 18Standard Practice forDetermination of Thermal Resistance of Loose-Fill BuildingInsulation1This standard is issued under the fixed designation C687; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of las
2、t revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice presents a laboratory guide to determinethe thermal resistance of loose-fill building insulations at meante
3、mperatures between 20 and 55C (4 to 131F).1.2 This practice applies to a wide variety of loose-fillthermal insulation products including but not limited to fibrousglass, rock/slag wool, or cellulosic fiber materials; granulartypes including vermiculite and perlite; pelletized products;and any other
4、insulation material installed pneumatically orpoured in place. It does not apply to products that change theircharacter after installation either by chemical reaction or theapplication of binders or adhesives, nor does it consider theeffects of structures, containments, facings, or air films.1.3 Sin
5、ce this practice is designed for reproducible productcomparison, it measures the thermal resistance of an insulationmaterial which has been preconditioned to a relatively drystate. Consideration of changes of thermal performance of ahygroscopic insulation by sorption of water is beyond thescope of t
6、his practice.1.4 The sample preparation techniques outlined in thispractice do not cover the characterization of loose-fill materialsintended for enclosed applications. For those applications, aseparate sample preparation technique that simulates the in-stalled condition will be required. However, e
7、ven for thoseapplications, some other aspects of this practice are applicable.1.5 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with
8、its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accor-dance with internationally recognized pri
9、nciples on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2C167 Test Methods for Thicknes
10、s and Density of Blanket orBatt Thermal InsulationsC168 Terminology Relating to Thermal InsulationC177 Test Method for Steady-State Heat Flux Measure-ments and Thermal Transmission Properties by Means ofthe Guarded-Hot-Plate ApparatusC518 Test Method for Steady-State Thermal TransmissionProperties b
11、y Means of the Heat Flow Meter ApparatusC653 Guide for Determination of the Thermal Resistance ofLow-Density Blanket-Type Mineral Fiber InsulationC739 Specification for Cellulosic Fiber Loose-Fill ThermalInsulationC1045 Practice for Calculating Thermal Transmission Prop-erties Under Steady-State Con
12、ditionsC1114 Test Method for Steady-State Thermal TransmissionProperties by Means of the Thin-Heater ApparatusC1363 Test Method for Thermal Performance of BuildingMaterials and Envelope Assemblies by Means of a HotBox ApparatusC1373 Practice for Determination of Thermal Resistance ofAttic Insulation
13、 Systems Under Simulated Winter Condi-tions3. Terminology3.1 Unless otherwise stated, the terms and definitions foundin Terminology C168 are applicable herein.4. Significance and Use4.1 The thermal resistance, R, of an insulation is used todescribe its thermal performance.1This practice is under the
14、 jurisdiction of ASTM Committee C16 on ThermalInsulation and is the direct responsibility of Subcommittee C16.30 on ThermalMeasurement.Current edition approved Sept. 1, 2018. Published October 2018. Originallyapproved in 1971. Last previous edition approved in 2017 as C687 17. DOI:10.1520/C0687-18.2
15、For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C7
16、00, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the W
17、orld Trade Organization Technical Barriers to Trade (TBT) Committee.14.2 The thermal resistance of an insulation is related to thedensity and thickness of the insulation. It is desirable to obtaintest data on thermal resistances at thicknesses and densitiesrelated to the end uses of the product.4.3
18、In normal use, the thickness of these products rangefrom less than 100 mm (4 in.) to greater than 500 mm (20 in.).Installed densities depend upon the product type, the installedthickness, the installation equipment used, the installationtechniques, and the geometry of the insulated space.4.4 Loose-f
19、ill insulations provide coverage information us-ing densities selected by manufacturers to represent the productsettled densities. Generally, it is necessary to know the productthermal performance at a representative density. Some cover-age charts utilize multiple densities to show that greaterthick
20、ness installations usually result in higher installed densi-ties. The use of multiple densities can be detected from thecoverage chart by calculating the density for several differentthermal resistance levels. (The density for a given thermalresistance can be calculated from the coverage chart bydiv
21、iding the minimum mass per unit area by the minimumthickness.) If the calculated densities are significantly differentat different thermal resistances, the multiple density strategyhas been used.4.5 When applicable specifications or codes do not specifythe nominal thermal resistance level to be used
22、 for comparisonpurposes, a recommended practice is to use the Rsi(met-ric) = 3.3 m2K/W (RIP=19hft2F/Btu) label density andthickness for that measurement.4.6 If the density for test purposes is not available from thecoverage chart, a test density shall be established by use ofapplicable specification
23、s and codes or, if none apply, agreementbetween the requesting body and the testing organization.4.7 Generally, thin sections of these materials are notuniform. Thus, the test thickness must be greater than or equalto the products representative thickness if the results are to beconsistent and typic
24、al of use.NOTE 1The representative thickness is specific for each product andis determined by running a series of tests in which the density is heldconstant but the thickness is increased. The representative thickness isdefined here as that thickness above which there is no more than a 2 %change in
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMC6872018STANDARDPRACTICEFORDETERMINATIONOFTHERMALRESISTANCEOFLOOSEFILLBUILDINGINSULATIONPDF

链接地址:http://www.mydoc123.com/p-1243521.html