2019年高考数学高频考点揭秘与仿真测试专题47数列数列的通项4(构造法)文(含解析).doc
《2019年高考数学高频考点揭秘与仿真测试专题47数列数列的通项4(构造法)文(含解析).doc》由会员分享,可在线阅读,更多相关《2019年高考数学高频考点揭秘与仿真测试专题47数列数列的通项4(构造法)文(含解析).doc(19页珍藏版)》请在麦多课文档分享上搜索。
1、1专题 47 数列 数列的通项 4(构造法)【考点讲解】1、具本目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础.二、知识概述:1.数列的通项公式:(1)如果数列 na的第 项与序号 n之间的关系可以 用一个式子来表示,那么这个公式叫做这个数列的通项公式即 f,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式.(2)数列 na的前 项和 nS和通项 na的关系: .2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与 n 之间的关系、
2、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求对于正负符号变化,可用n或 1n来调整(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:已知数列的通项公式,就可以求出数列的各项;根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律, 写出通项公式. 3.数列通项一般有三种类型
3、:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知 Sn,求通项,破解方法:利用 Sn-Sn-1= an,但要注意分类讨论,本例的求解中检验必不可少,值得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。3. 已知数列 na的前 项和 nS,求数列的通项公式,其求解过程分为三步:(1)先利用 1S求出 1;(2)用 替换 n中的 得到一个新的关系,利用 na1nS (2)便可求出当 2n时 na的表达式;2(3)对 1n时的结果进行检验,看是否符合 2n时 na的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分 1n与 两段
4、来写 【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分.4. 递推公式推导通项公式方法:(1)叠加法: 叠加法(或累加法):已知 ,求数列通项公式常用叠加法(或累加法)即 .(2)累乘法:已知 求数列通项公式用累乘法.(3)待定系数法: (其中 ,pq均为常数, )解法:把原递 推公式转化为: ,其中 pqt1,再利用换元法转化为等比数列求解.(4)待定系数法: (其中 ,pq均为常数, ). (或,其中 ,pqr均为常数).解法:在原递推公式两边同除以 1n,得: ,令 nqab,得: ,再按第(3)种情况求解.(5)待定系数法: 解法:一般 利用待
5、定系数法构造等比数列,即令 ,与已知递推式比较,解出 yx,从而转化为 是公比为 p的等比数列.(6)待定系数法: 3解法:一般利用待定系数法构造等比数列,即令 ,与已知递推式比较,解出 yx,从而转化为 是公比为 p的等比数列.(7)待定系数法: (其中 ,pq均为常数).解法:先把原递推公式转化为 其中 ,st满足 tq,再按第(4)种情况求解.(8)取倒数法: 解法:这种类型一般是等式两边取倒数后换元转化为 ,按第(3)种情况求解.( ,解法 :等式两边同时除以 1na后换元转化为 ,按第(3)种情况求解.).(9)取对数 rnnpa1解 法:这种类型一般是等式两边取以 p为底的对数,后
6、转化为 ,按第(3)种情况求解.5. 以数列为背景的新定义问题是高考中的一个热点题型,考查频率较高,一般会结合归纳推理综合命题常见的命题形式有新法则、新定义、新背景、新运算等(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法类型一:取倒数法已知函数 ,数列 na满足()求数列 na的通项公式;()记 ,求 nS.【分析】由于 bn和 c 中的项都和 a 中的项有关, an中又有 S 1n=4a +2
7、,可由 S 2nS 1作切入点探索解题的途径4【解析】 ()由已知得, 131na, 31na,即 1n数列 是首项 ,公差 d的等差数列. ,故 () 类型二:已知数列 na满足 ,求数列 na的通项公式。【分析】通过对递推关系式的整理,目的是构造成特殊数列.类型三:数列 na满足 ,求数列 na的通项公式.【解析】由 , 得即 ,且 .5 1na是以 2 为公比,3 为首项的等比数列.利用逐差法可得= 123n N.类型四:已知数列 na满足求数列 n的通项公式 n;求 的值.【真题分析】1.【2015 全国】设 nS是数列 na的前 n 项和,且 1a, ,则 nS_【解析】本题考查的是
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 高频 考点 揭秘 仿真 测试 专题 47 数列 构造 解析 DOC
