版选修4_5.doc
《版选修4_5.doc》由会员分享,可在线阅读,更多相关《版选修4_5.doc(6页珍藏版)》请在麦多课文档分享上搜索。
1、1三 排序不等式1顺序和、乱序和、反序和设 a1 a2 an, b1 b2 bn为两组实数, c1, c2, cn为 b1, b2, bn的任一排列,称 a1b1 a2b2 anbn为这两个实数组的顺序积之和(简称顺序和),称a1bn a2bn1 anb1为这两个实数组的反序积之和(简称反序和)称a1c1 a2c2 ancn为这两个实数组的乱序积之和(简称乱序和)2排序不等式(排序原理)定理:(排序原理,又称为排序不等式) 设 a1 a2 an, b1 b2 bn为两组实数, c1, c2, cn为 b1, b2, bn的任一排列,则有a1bn a2bn1 anb1 a1c1 a2c2 anc
2、n a1b1 a2b2 anbn,等号成立(反序和等于顺序和) a1 a2 an或 b1 b2 bn.排序原理可简记作:反序和乱序和顺序和点睛 排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小用 排 序 不 等 式 证 明 不 等 式 (所 证 不 等 式 ) 例 1 已知 a, b, c 为正数,且 a b c,求证: .a5b3c3 b5c3a3 c5a3b3 1a 1b 1c思路点拨 分析题目中已明确 a b c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可证明 a b0,于是 ,1a 1b又 c0,从而 ,1bc
3、 1ca同理 ,从而 .1ca 1ab 1bc 1ca 1ab又由于顺序和不小于乱序和,故可得 a5b3c3 b5c3a3 c5a3b3 b5b3c3 c5c3a3 a5a3b3 b2c3 c2a3 a2b3( a2 b2 c2, 1c3 1b3 1a3)2 .c2c3 a2a3 b2b3 1c 1a 1b 1a 1b 1c原不等式成立利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组1已知 0 (sin 2 sin 2 sin 2 )12证明:0cos cos 0.sin cos sin cos sin cos sin
4、 cos sin cos sin cos (sin 2 sin 2 sin 2 )122设 x1,求证:1 x x2 x2n(2 n1) xn.证明: x1,1 x x2 xn.由排序原理得 12 x2 x4 x2n1 xn xxn1 xn1 x xn1即 1 x2 x4 x2n( n1) xn.又因为 x, x2, xn,1 为 1, x, x2, xn的一个排列,由排序原理得 1x xx2 xn1 xn xn11 xn xxn1 xn1 x xn1,即 x x3 x2n1 xn( n1) xn.将相加得 1 x x2 x2n(2 n1) xn.用排序不等式证明不等式(对所证不等式中的字母大
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 _5DOC
