(毕节专版)2019年中考数学复习专题6四边形与三角形的综合(精讲)试题.doc
《(毕节专版)2019年中考数学复习专题6四边形与三角形的综合(精讲)试题.doc》由会员分享,可在线阅读,更多相关《(毕节专版)2019年中考数学复习专题6四边形与三角形的综合(精讲)试题.doc(11页珍藏版)》请在麦多课文档分享上搜索。
1、1专题六 四边形与三角形的综合毕节中考备考攻略纵观近4年毕节中考数学试卷,四边形与三角形的综合是每年的必考考点,其中2015年第24题综合考查平行四边形和直角三角形;2016年第25题综合考查菱形和三角形全等;2017年第24题综合考查平行四边形与三角形相似、解直角三角形;2018年第24题综合考查平行四边形、三角形和菱形.预计2019年将继续综合考查四边形与三角形.熟练掌握特殊四边形的性质与判定、特殊三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,掌握三角形中位线和梯形中位线性质的推导和应用,会画出四边形全等变换后的图形.解决问题时必须充分利用几何图形的性质及在题设的基础上挖掘
2、几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用各种数学方法.中考重难点突破四边形与特殊三角形例1 如图,在四边形ABCD中,ABDC,ABAD,对角线AC,BD交于点O,AC平分BAD,过点C作CEAB交AB的延长线于点E,连接OE.(1)求证:四边形ABC D是菱形;(2)若AB ,BD2,求OE的长.5【解析】(1)先判断出OABDCA,进而判断出DACDCA,得出CDADAB,即可得出结论;(2)先判断出OEOAOC,再求出OB1,利用勾股定理求出OA,即可得出结果.【答案】(1)证明
3、:ABCD,CABACD.AC平分BAD,CABCAD,CADACD,ADCD.又ADAB,ABCD.又ABCD,四边形ABCD是平行四边形.又ABAD,四边形ABCD是菱形;(2)解:四边形ABCD是菱形,ACBD,OAOC AC,OBOD BD1.12 12在 RtAOB中,AOB90,OA 2.AB2 OB2CEAB,AEC90.在 RtAEC中,O为AC中点,OE ACOA2.122四边形与三角形全等例2 (2018张家界中考)在矩形ABCD中,点E在BC上,AEAD,DFAE,垂足为点F.(1)求证:DFAB;(2)若FDC30,且AB4,求AD.【解析】(1)利用“ AAS”证AD
4、FEAB即可得证;(2)由ADFFDC90,DAFADF90得FDCDAF30,据此知AD2DF ,根据DFAB可得答案.【答案】(1)证明:在矩形ABCD中,ADBC,AEBDAF.又DFAE,DFA90,DFAB.又ADEA,ADFEAB,DFAB;(2)解:ADFFDC90,DAFADF90,FDCDAF30,AD2DF.DFAB4,AD2AB8.四边形与三角形相似例3 (2018资阳中考)已知:如图,在 RtABC中,ACB90,点M是斜边AB的中点,MDBC,且MDCM,DEAB于点E,连接AD,CD.(1)求证:MEDBCA;(2)求证:AMDCMD;(3)设MDE的面积为S 1,
5、四边形BCMD的面积为S 2,当S 2 S1时,求 cos ABC的值.175【解析】(1)易证DMECBA,ACBDE M90,从而可证明MEDBCA;(2)由ACB90,点M是斜边AB的中点,可知BM CMAM,又由MDBC可证明AMDCMD,从而可利用全等三角形的判定方法证明AMDCMD;(3)易证DM AB,由(1)可知MEDBCA,所以 ,所以S MCB SACB 2S 1,从而可求出S EBD12 S1S ACB (DMAB)2 14 12S 2S MCB S 1 S1,由于 ,从而可知 ,设ME5x,EB2x,从而用x表示出AB,BC,最后根据锐角25 S1S EBD MEEB
6、MEBE 52三角函数的定义即可求出答案.【答案】(1)证明:MDBC,DMECBA.ACBDEM90,MEDBCA;3(2)证明:ACB90,点M是斜边AB的中点,BMCMAM,MCBMBC.DMBMBC,MCBDMBMBC.MDBC,CMD180MCB.又AMD180DMB,AMDCMD.在AMD与CMD中,MD MD, AMD CMD,AM CM, )AMDCMD( SAS);(3)解:DMCM,AMCMDMBM,DM AB.12由(1)可知MEDBCA, ,S ACB 4S 1.S1S ACB (DMAB)2 14CM是ACB的中线,S MCB SACB 2S 1,12S EBD S
7、2S MCB S 1 S1,25 , , .S1S EBD MEEB S125S1 MEEB MEEB 52设ME5x,EB2x,则BM7x,AB2BM14x. ,BC10x,MDAB MEBC 12 cos ABC . BCAB 10x14x 571.(2018贺州中考)如图,在ABC中,ACB90,O,D分别是边AC,AB的中点,过点C作CEAB交DO的延长线于点E,连接AE.4(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24, tan BAC ,求BC的长.(1)证明:点O是AC的中点,34OAOC.CEAB,DAOECO.又AODCOE,AODCOE( ASA),A
8、DCE,四边形AECD是平行四边形.又CD是 RtABC斜边AB上的中线,CDAD AB,12四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,ACED.在 RtAOD中, tan DAO tan BAC ,ODOA 34可设OD3x,OA4x,则ED2OD6x,AC2OA8x.由题意可得 6x8x24,x1,OD3.12O,D分别是AC,AB的中点,OD是ABC的中位线,BC2OD6.2.(2018盐城中考)在正方形ABCD中,对角线BD所在的直线上有两点E,F满足BEDF,连接AE,AF,CE,CF,如图. (1)求证:AB EADF;(2)试判断四边形AECF的形状,并说明理
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕节 专版 2019 年中 数学 复习 专题 四边形 三角形 综合 试题 DOC
