2019高考数学二轮复习专题四数列2.4.2数列的通项与求和学案理.doc
《2019高考数学二轮复习专题四数列2.4.2数列的通项与求和学案理.doc》由会员分享,可在线阅读,更多相关《2019高考数学二轮复习专题四数列2.4.2数列的通项与求和学案理.doc(2页珍藏版)》请在麦多课文档分享上搜索。
1、12.4.2 数列的通项与求和1(2017全国卷)设数列 an满足 a13 a2(2 n1) an2 n.(1)求 an的通项公式;(2)求数列 的前 n 项和an2n 1解 (1)因为 a13 a2(2 n1) an2 n,故当 n2 时, a13 a2(2 n3)an1 2( n1)两式相减得(2 n1) an2,所以 an (n2)22n 1又由题设可得 a12 也适合上式,从而 an的通项公式为 an .22n 1(2)记 的前 n 项和为 Sn.an2n 1由(1)知 ,an2n 1 2 2n 1 2n 1 12n 1 12n 1则 Sn .11 13 13 15 12n 1 12n
2、 1 2n2n 12(2017天津卷)已知 an为等差数列,前 n 项和为 Sn(nN *), bn是首项为 2 的等比数列,且公比大于 0, b2 b312, b3 a42 a1, S1111 b4.(1)求 an和 bn的通项公式;(2)求数列 a2nb2n1 的前 n 项和( nN *)解 (1)设等差数列 an的公差为 d,等比数列 bn的公比为 q.由已知 b2 b312,得 b1(q q2)12,而 b12,所以 q2 q60.又因为 q0,解得 q2.所以 bn2 n.由 b3 a42 a1,可得 3d a18.由 S1111 b4,可得 a15 d16,联立,解得 a11, d
3、3,由此可得 an3 n2.所以数列 an的通项公式为 an3 n2,数列 bn的通项公式为 bn2 n.(2)设数列 a2nb2n1 的前 n 项和为 Tn,由 a2n6 n2, b2n1 24 n1 ,有 a2nb2n1 (3 n1)4 n,故Tn2454 284 3(3 n1)4 n,4Tn24 254 384 4(3 n4)4 n(3 n1)4 n1 ,上述两式相减,得23 Tn2434 234 334 n(3 n1)4n1 4(3 n1)4 n1 (3 n2)4 n1 8.12 1 4n1 4得 Tn 4n1 .3n 23 83所以数列 a2nb2n1 的前 n 项和为 4n1 .3n 23 831.高考主要考查两种基本数列(等差数列、等比数列)、两种数列求和方法(裂项求和法、错位相减法)、两类综合(与函数综合、与不等式综合),主要突出数学思想的应用2若以解答题形式考查,数列往往与解三角形在 17 题的位置上交替考查,试题难度中等;若以客观题考查,难度中等的题目较多,但有时也出现在第 12 题或 16 题位置上,难度偏大,复习时应引起关注
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 二轮 复习 专题 数列 242 求和 学案理 DOC
