2019年春八年级数学下册第17章勾股定理复习课课件(新版)新人教版.ppt
《2019年春八年级数学下册第17章勾股定理复习课课件(新版)新人教版.ppt》由会员分享,可在线阅读,更多相关《2019年春八年级数学下册第17章勾股定理复习课课件(新版)新人教版.ppt(27页珍藏版)》请在麦多课文档分享上搜索。
1、,RJ八(下) 教学课件,第十七章 勾股定理,复习课,1.如果直角三角形两直角边分别为a、b,斜边为c,那么,a2 + b2 = c2,即直角三角形两直角边的平方和等于斜边的平方.,在直角三角形中才可以运用,2.勾股定理的应用条件,一、勾股定理,3.勾股定理表达式的常见变形:a2c2b2, b2c2a2,,知识梳理,二、勾股定理的逆定理,1.勾股定理的逆定理,如果三角形的三边长a、b、c满足 a2 +b2=c2 ,那么这个三角形是直角三角形.,满足a2 +b2=c2的三个正整数,称为勾股数.,2.勾股数,3.原命题与逆命题,如果两个命题的题设、结论正好相反,那么把其中 一个叫做原命题,另一个叫
2、做它的逆命题.,知识梳理,在RtABC中,ACB=90,CDAB于点D,AC=20,BC=15. (1)求AB的长; (2)求BD的长,解:(1)在RtABC中,ACB=90,(2)(方法一)SABC= ACBC= ABCD, 2015=25CD,CD=12 在RtBCD中,,勾股定理及其应用,例1,考点讲练,(方法二)设BD=x,则AD=25-x.,解得x=9.BD=9.,解题技巧:对于本题类似的模型,若已知两直角边求斜边上的高常需结合面积的两种表示法起来考查,若是同本题(2)中两直角三角形共一边的情况,还可利用勾股定理列方程求解.,考点讲练,1.RtABC中,斜边BC=2,则AB2+AC2
3、+BC2的值为( )A.8 B.4 C.6 D.无法计算,A,3.一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为_.,2.如图,C=ABD=90,AC=4,BC=3,BD=12,则AD的长为_,13或5,13,考点讲练,4已知RtABC中,C=90,若a +b=14cm,c=10cm,求ABC的面积.,解:a+b=14, (a+b)2=196. 又a2+b2=c2=100, 2ab=196-(a2+b2)=96, ab=24,考点讲练,我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,
4、它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?,例2,考点讲练,解:如图,设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺.,在直角三角形ABC中,BC=5尺,由勾股定理,得BC2+AC2=AB2,即 52+ x2= (x+1)2,,25+ x2= x2+2x+1,,2x=24,, x=12, x+1=13.,即水池的水深12尺,这根芦苇长13尺.,D,B,C,A,考点讲练,如图所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处,问怎样走路线最短?最短路线长为多少?,解析:蚂蚁由A点沿长方体
5、的表面爬行到C1点,有三种方式:,沿ABB1A1和A1 B1C1D1面;沿ABB1A1和BCC1B1面;沿AA1D1D和A1B1C1D1面. 把三种方式分别展成平面图形如下:,例3,考点讲练,解:在RtABC1中,,在RtACC1中,,在RtAB1C1中,,沿路径走路径最短,最短路径长为5.,考点讲练,解题技巧:化折为直:长方体中求两点之间的最短距离,展开方法有多种,一般沿最长棱展开,距离最短.,1.现有一长5米的梯子架靠在建筑物的墙上,它们的底部在地面的水平距离是3米,则梯子可以到达建筑物的高度是_米,4,考点讲练,在RtABO中,OA2米,DCOB1.4米, AB2221.422.04.
6、42.61.4,1.421.96, 2.041.96, 卡车可以通过,但要小心,解:如图,过半圆直径的中点O,作直径的垂线交下底边于点D,取点C,使CD1.4米,过C作OD的平行线交半圆直径于点B,交半圆于点A.,2.如图,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道?,考点讲练,3.在O处的某海防哨所发现在它的北偏东60方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处. (1)此时快艇航行了多少米(即AB 的长)?,A,B,60,45,C,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年春八 年级 数学 下册 17 勾股定理 复习 课件 新版 新人 PPT
