2019年春八年级数学下册第1章三角形的证明1.1等腰三角形第2课时等边三角形的性质课件(新版)北师大版.ppt
《2019年春八年级数学下册第1章三角形的证明1.1等腰三角形第2课时等边三角形的性质课件(新版)北师大版.ppt》由会员分享,可在线阅读,更多相关《2019年春八年级数学下册第1章三角形的证明1.1等腰三角形第2课时等边三角形的性质课件(新版)北师大版.ppt(18页珍藏版)》请在麦多课文档分享上搜索。
1、1.1 等腰三角形,第一章 三角形的证明,第2课时 等边三角形的性质,学习目标,1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质; 2.学习等边三角形的性质,并能够运用其解决问题.(重点、难点),在七下我们已经知道了“三边相等的三角形是等边三角形”,生活中有很多等边三角形,如交通图标、台球室的三角架等,它们都是等边三角形.,思考:在上一节课我们证明等腰三角形的两底角相等,那等边三角形的各角之间有什么关系呢?,导入新课,情境引入,讲授新课,上节课我们证明了等腰三角形的“三线合一”,试猜想等腰三角形的两底角的角平分线、两腰上的高、两腰上的中线有什么关系呢
2、?,猜想:底角的两条平分线相等; 两条腰上的中线相等; 两条腰上的高线相等.,你能证明你的猜想吗?,例1 证明:等腰三角形两底角的平分线相等,A,C,B,E,已知:,求证:,BD=CE.,如图, 在ABC中, AB=AC, BD和CE是ABC的角平分线,1,2,猜想证明,2= ACB(已知),AB=AC(已知), ABC=ACB(等边对等角).,证明:,又1= ABC,,1=2(等式性质),在BDC与CEB中,,DCB= EBC(已知),,BC=CB(公共边),,1=2(已证),,BDCCEB(ASA),BD=CE(全等三角形的对应边相等),A,C,B,E,1,2,又CM= ,BN= ,,例2
3、 证明: 等腰三角形两腰上的中线相等,BM=CN,求证:,已知:如图,在ABC中,AB=AC,BM,CN是ABC两腰上的中线,证明:,AB=AC(已知),ABC=ACB.,CM=BN 在BMC与CNB中,, BC=CB,MCB=NBC, CM=BN,,BMCCNB(SAS),BM=CN.,例3 证明: 等腰三角形两腰上的高相等,BP=CQ,求证:,已知:如图,在ABC中,AB=AC,BP,CQ是 ABC两腰上的高,证明:,AB=AC(已知),ABC=ACB.,在BMC与CNB中,, BC=CB,QBC=PCB, BQC=CPB,,BQCCPB(SAS),BP=CQ.,还有其他的结论吗?,1.已
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年春八 年级 数学 下册 三角形 证明 11 等腰三角形 课时 等边三角形 性质 课件 新版 北师大 PPT

链接地址:http://www.mydoc123.com/p-953741.html