2018年中考数学真题分类汇编(第二期)专题5二元一次方程(组)及其应用试题(含解析).doc
《2018年中考数学真题分类汇编(第二期)专题5二元一次方程(组)及其应用试题(含解析).doc》由会员分享,可在线阅读,更多相关《2018年中考数学真题分类汇编(第二期)专题5二元一次方程(组)及其应用试题(含解析).doc(22页珍藏版)》请在麦多课文档分享上搜索。
1、1二元一次方程(组)及其应用一.选择题1. (2018湖南怀化4 分)二元一次方程组 的解是( )A B C D【分析】方程组利用加减消元法求出解即可【解答】解: ,+得:2x=0,解得:x=0,把 x=0 代入得:y=2,则方程组的解为 ,故选:B【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法2.(2018山东东营市3 分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同由于会场布置需要,购买时以一束(4 个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )
2、A19 B18 C16 D15【分析】设一个笑脸气球的单价为 x 元/个,一个爱心气球的单价为 y 元/个,根据前两束气球的价格,即可得出关于 x、y 的方程组,用前两束气球的价格相加除以 2,即可求出第三束气球的价格【解答】解:设一个笑脸气球的单价为 x 元/个,一个爱心气球的单价为 y 元/个,根据题意得: ,方程(+)2,得:2x+2y=18故选:B【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题2的关键3. (2018杭州3 分)某次知识竞赛共有 20 道题,规定:每答对一题得+5 分,每答错一题得-2 分,不答的题得 0 分。已知圆圆这次竞赛得了 6
3、0 分,设圆圆答对了 道题,答错了 道题,则( ) A. B. C. D. 【答案】C 【考点】二元一次方程的实际应用-鸡兔同笼问题 【解析】 【解答】根据题意得:5x-2y+0(20-x-y)=60,即 5x-2y=60 故答案为:C【分析】根据圆圆这次竞赛得分为 60 分,建立方程即可。4.(2018临安3 分.)中央电视台 2 套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量A2 B3 C4 D5【分析】由图可知:2 球体的重量=5 圆柱体的重量,2 正方体的重量=3 圆柱体的重量可设一个球体重 x,圆柱重 y,正方体重 z根据等量关系
4、列方程即可得出答案【解答】解:设一个球体重 x,圆柱重 y,正方体重 z根据等量关系列方程 2x=5y;2 z=3y,消去 y 可得: x= z,则 3x=5z,即三个球体的重量等于五个正方体的重量故选:D【点评】此题的关键是找到球,正方体,圆柱体的关系5.(2018黑龙江龙东地区3 分)为奖励消防演练活动中表现优异的同学,某校决定用 1200元购买篮球和排球,其中篮球每个 120 元,排球每个 90 元,在购买资金恰好用尽的情况下,购买方案有( )A4 种 B3 种 C2 种 D1 种【分析】设购买篮球 x 个,排球 y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于 x、
5、y 的方程,由 x、y 均为非负整数即可得【解答】解:设购买篮球 x 个,排球 y 个,根据题意可得 120x+90y=1200,则 y= ,3x、y 均为非负整数,x=1.y=12;x=4.y=8;x=7.y=4;x=10.y=0;所以购买资金恰好用尽的情况下,购买方案有 4 种,故选:A【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程6.(2018黑龙江齐齐哈尔3 分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计 56 个小时的工作时间,需要每名男生工作 5 个小时,每名女生工作 4 个小时,小张可以安排学生参加活动的方案共
6、有( )A1 种 B2 种 C3 种 D4 种【分析】设安排女生 x 人,安排男生 y 人,由“累计 56 个小时的工作时间”列出方程求得正整数解【解答】解:设安排女生 x 人,安排男生 y 人,依题意得:4x+5y=56,则 x= 当 y=4 时,x=9当 y=8 时,x=4即安排女生 9 人,安排男生 4 人;安排女生 4 人,安排男生 8 人共有 2 种方案故选:B【点评】考查了二元一次方程的应用注意:根据未知数的实际意义求其整数解7.(2018福建 A 卷4 分)我国古代数学著作增删算法统宗记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托“其大意为:
7、现有一根竿和一条绳索,用绳索去量竿,绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5尺设绳索长 x 尺,竿长 y 尺,则符合题意的方程组是( )A BC D【分析】设索长为 x 尺,竿子长为 y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托” ,即可得出关于 x、y 的二元一次方程组【解答】解:设索长为 x 尺,竿子长为 y 尺,4根据题意得: 故选:A【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键8.(2018福建 B 卷4 分)我国古代数学著作增删算法统宗记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,
8、却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5尺设绳索长 x 尺,竿长 y 尺,则符合题意的方程组是( )A BC D【分析】设索长为 x 尺,竿子长为 y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托” ,即可得出关于 x、y 的二元一次方程组【解答】解:设索长为 x 尺,竿子长为 y 尺,根据题意得: 故选:A【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键9. (2018遂宁4 分)二元一次方程组 的解是( )A B C D【分析】方程组利用加减消元法求出解即可
9、【解答】解: ,+得:3x=6,解得:x=2,把 x=2 代入得:y=0,则方程组的解为 ,故选:B5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法二.填空题1. (2018 湖北随州3 分)已知 是关于 x,y 的二元一次方程组 的一组解,则 a+b= 5 【分析】根据方程组解的定义,把问题转化为关于 A.b 的方程组,求出 A.b 即可解决问题;【解答】解: 是关于 x,y 的二元一次方程组 的一组解, ,解得 ,a+b=5,故答案为 5【点评】本题考查二元方程组,解题的关键是理解题意,学会用转化的思想思考问题,所以中考常考题型2. (2018湖
10、北襄阳3 分)我国古代数学著作九章算术中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出 8 元,则多 3 元;每人出 7 元,则差 4元问这个物品的价格是多少元?”该物品的价格是 53 元【分析】设该商品的价格是 x 元,共同购买该物品的有 y 人,根据“每人出 8 元,则多 3 元;每人出 7 元,则差 4 元” ,即可得出关于 x、y 的二元一次方程组,解之即可得出结论【解答】解:设该商品的价格是 x 元,共同购买该物品的有 y 人,根据题意得: ,解得: 故答案为:53【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键3.
11、(2018江苏无锡2 分)方程组 的解是 【分析】利用加减消元法求解可得【解答】解: ,得:3y=3,解得:y=1,6将 y=1 代入,得:x1=2,解得:x=3,所以方程组的解为 ,故答案为: 【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用4.(2018江苏淮安3 分)若关于 x、y 的二元一次方程 3xay=1 有一个解是 ,则 a= 4 【分析】把 x 与 y 的值代入方程计算即可求出 a 的值【解答】解:把 代入方程得:92a=1,解得:a=4,故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值5.2018内
12、蒙古包头市3 分)若 a3b=2,3ab=6,则 ba 的值为 2 【分析】将两方程相加可得 4a4b=8,再两边都除以 2 得出 ab 的值,继而由相反数定义或等式的性质即可得出答案【解答】解:由题意知 ,+,得:4a4b=8,则 ab=2,ba=2,故答案为:2【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点6 (2018黑龙江齐齐哈尔3 分)爸爸沿街匀速行走,发现每隔 7 分钟从背后驶过一辆 103路公交车,每隔 5 分钟从迎面驶来一辆 103 路公交车,假设每辆 103 路公交车行驶速度相同,而且 103 路公交车总站
13、每隔固定时间发一辆车,那么 103 路公交车行驶速度是爸爸行走速度的 6 倍【分析】设 103 路公交车行驶速度为 x 米/分钟,爸爸行走速度为 y 米/分钟,两辆 103 路公交车间的间距为 s 米,根据“每隔 7 分钟从背后驶过一辆 103 路公交车,每隔 5 分钟从迎面驶来一辆 103 路公交车” ,即可得出关于 x、y 的二元一次方程组,消去 s 即可得出 x=6y,此题得解【解答】解:设 103 路公交车行驶速度为 x 米/分钟,爸爸行走速度为 y 米/分钟,两辆 103 路7公交车间的间距为 s 米,根据题意得: ,解得:x=6y故答案为:6【点评】本题考查了二元一次方程组的应用,
14、找准等量关系,正确列出二元一次方程组是解题的关键7.(2018贵州遵义4 分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金 二 两【分析】设一牛值金 x 两,一羊值金 y 两,根据“牛五羊二值金八两;牛二羊五值金六两” ,即可得出关于 x、y 的二元一次方程组,两方程相加除以 7,即可求出一牛一羊的价值【解答】解:设一牛值金 x 两,一羊值金 y 两,根据题意得: ,(+)7,得:x+y=2故答案为:二三.解答题1. (2018湖南郴州8 分)郴州市正在创建“全国文明城市” ,某校拟举办“创文知识”抢答赛,欲购买 A.B 两种奖品以鼓励抢答者如果购买 A 种 20
15、 件,B 种 15 件,共需 380 元;如果购买 A 种 15 件,B 种 10 件,共需 280 元(1)A.B 两种奖品每件各多少元?(2)现要购买 A.B 两种奖品共 100 件,总费用不超过 900 元,那么 A 种奖品最多购买多少件?【分析】 (1)设 A 种奖品每件 x 元,B 种奖品每件 y 元,根据“如果购买 A 种 20 件,B 种 15 件,共需 380 元;如果购买 A 种 15 件,B 种 10 件,共需 280 元” ,即可得出关于 x、y 的二元一次方程组,解之即可得出结论;(2)设 A 种奖品购买 a 件,则 B 种奖品购买(100a)件,根据总价=单价购买数量
16、结合总费用不超过 900 元,即可得出关于 a 的一元一次不等式,解之取其中最大的整数即可得出结论【解答】解:(1)设 A 种奖品每件 x 元,B 种奖品每件 y 元,根据题意得: ,8解得: 答:A 种奖品每件 16 元,B 种奖品每件 4 元(2)设 A 种奖品购买 a 件,则 B 种奖品购买(100a)件,根据题意得:16a+4(100a)900,解得:a a 为整数,a41答:A 种奖品最多购买 41 件【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,找出关于 a 的一元一次不等式2.(
17、2018江苏宿迁8 分)解方程组:【答案】原方程组的解为【分析】利用代入法进行求解即可得.【详解】 ,由得:x=-2y 将代入得:3(-2y)+4y=6,解得:y=-3,将 y=-3 代入得:x=6,原方程组的解为 .【点睛】本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.3.(2018江苏苏州8 分)某学校准备购买若干台 A 型电脑和 B 型打印机如果购买 1 台 A 型电脑,2 台 B 型打印机,一共需要花费 5900 元;如果购买 2 台 A 型电脑,2 台 B 型打印机,一共需要花费 9400 元(1)求每台 A 型电脑和每台 B 型打印机的价格分别是多少元?(2
18、)如果学校购买 A 型电脑和 B 型打印机的预算费用不超过 20000 元,并且购买 B 型打印机的台数要比购买 A 型电脑的台数多 1 台,那么该学校至多能购买多少台 B 型打印机?【分析】 (1)设每台 A 型电脑的价格为 x 元,每台 B 型打印机的价格为 y 元,根据“1 台 A 型电脑的钱数+2 台 B 型打印机的钱数=5900,2 台 A 型电脑的钱数+2 台 B 型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买 a 台 B 型打印机,则购买 A 型电脑为(a1)台,根据“(a1)台 A 型电脑的钱数+a 台 B 型打印机的钱数20000”列出不等式,解之可
19、得9【解答】解:(1)设每台 A 型电脑的价格为 x 元,每台 B 型打印机的价格为 y 元,根据题意,得: ,解得: ,答:每台 A 型电脑的价格为 3500 元,每台 B 型打印机的价格为 1200 元;(2)设学校购买 a 台 B 型打印机,则购买 A 型电脑为(a1)台,根据题意,得:3500(a1)+1200a20000,解得:a5,答:该学校至多能购买 5 台 B 型打印机【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式4.(2018山东济宁市8 分)建设中的大外环路是我市的一项重点民生工程某
20、工程公司承建的一段路基工程的施工土方量为 120 万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工 150 天完成由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工 40天后甲队返回,两队又共同施工了 110 天,这时甲乙两队共完成土方量 103.2 万立方(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证 150 天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】 (1)设甲队原计划平均每天的施工土方量为 x 万立方,乙队原计划平均每天
21、的施工土方量为 y 万立方,根据“甲乙两队合作 150 天完成土方量 120 万立方,甲队施工 110 天、乙队施工 150 天完成土方量 103.2 万立方” ,即可得出关于 x、y 的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高 a 万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于 a 的一元一次不等式,解之取其中的最小值即可得出结论【解答】解:(1)设甲队原计划平均每天的施工土方量为 x 万立方,乙队原计划平均每天的施工土方量为 y 万立方,根据题意得: ,解得: 答:甲队原计划平均每天的施工土方量为 0.4
22、2 万立方,乙队原计划平均每天的施工土方量为0.38 万立方(2)设乙队平均每天的施工土方量比原来提高 a 万立方才能保证按时完成任务,根据题意得:1100.42+(40+110)(0.38+a)120,10解得:a0.112答:乙队平均每天的施工土方量至少要比原来提高 0.112 万立方才能保证按时完成任务【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于 a 的一元一次不等式5.(2018山东烟台市9 分)为提高市民的环保意识,倡导“节能减排,绿色出行” ,某市计划在城区投放一批“共
23、享单车”这批单车分为 A,B 两种不同款型,其中 A 型车单价 400 元,B 型车单价 320 元(1)今年年初, “共享单车”试点投放在某市中心城区正式启动投放 A,B 两种款型的单车共100 辆,总价值 36800 元试问本次试点投放的 A 型车与 B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中 A,B 两车型的数量比进行投放,且投资总价值不低于 184 万元请问城区 10 万人口平均每 100 人至少享有 A 型车与 B 型车各多少辆?【分析】 (1)设本次试点投放的 A 型车 x 辆、B 型车 y 辆,根据“两种款型的
24、单车共 100 辆,总价值 36800 元”列方程组求解可得;(2)由(1)知 A.B 型车辆的数量比为 3:2,据此设整个城区全面铺开时投放的 A 型车 3a 辆、B 型车 2a 辆,根据“投资总价值不低于 184 万元”列出关于 a 的不等式,解之求得 a 的范围,进一步求解可得【解答】解:(1)设本次试点投放的 A 型车 x 辆、B 型车 y 辆,根据题意,得: ,解得: ,答:本次试点投放的 A 型车 60 辆、B 型车 40 辆;(2)由(1)知 A.B 型车辆的数量比为 3:2,设整个城区全面铺开时投放的 A 型车 3a 辆、B 型车 2a 辆,根据题意,得:3a400+2a320
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 数学 分类 汇编 第二 专题 二元 一次方程 及其 应用 试题 解析 DOC
