NASA NACA-RM-L51A10-1951 An investigation of the effect of vertical-fin location and area on low-speed lateral stability derivatives of a semitailless airplane model《垂直翼片位置和区域对半无尾飞.pdf
《NASA NACA-RM-L51A10-1951 An investigation of the effect of vertical-fin location and area on low-speed lateral stability derivatives of a semitailless airplane model《垂直翼片位置和区域对半无尾飞.pdf》由会员分享,可在线阅读,更多相关《NASA NACA-RM-L51A10-1951 An investigation of the effect of vertical-fin location and area on low-speed lateral stability derivatives of a semitailless airplane model《垂直翼片位置和区域对半无尾飞.pdf(42页珍藏版)》请在麦多课文档分享上搜索。
1、RESEARCH MEMORANDUM AN INVESTIGATION OF Ti33 EFFECT OF VERTICAL-FIN LOCATION AMD AREA ON LOW-SPEED LATERAL STABILITY DERIVATIVES OF A SEMITAILLESS AIRPLANE MODEL By Lewis R. Fisher and William H. Michael, Jr. Langley Aeronautical Labratory Langley Field, Va NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC
2、S WASHINGTON March 7, 1951 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-1 NACA RM L5IA10 NATIONAL ADVISORY COMMIlTEE FOR AERONAUTICS RESEARCH MEMORANDUM AN INVESTIGATION OF TEE EFFECT OF VEKEICAL-FIN LOCATION AND AREA ON LOW-SPEED LFlTERAL STABILI
3、TY DERIVATIVES OF A SEMITAILLESS AIRPLANE MODEL By Lewis R. Fisber and William E. Michael, Jr. SUMMARY The results of a low-speed wind-tunnel investigation to determine - the effects of vertical-fin location and area on the static and rotary lateral stability characteristics of a adtailless airplane
4、 model indicated that the contributions of the vertical fin to the stability derivatives could be estimated with reasonable accuracy by simple considerations in spite of the unusually ahort tail length ad large tail height of this configuration. - Although the differences in fin effectiveness are no
5、t large, for comparable fin areas and equal tail lengths, fins located at the 86- percent spanwise location are, in general, more satisfactory for providing directional stability and daurping in yaw than fine located at the ), V(bhS), and V(ck3). For the V(bk3) and V(c4.S) configurations, two additi
6、onal mall fins were placed on the bottom surface of the wing opposite to and in the same plane as fins (bz) and V(-), respective-. I V(b2S) , and V( c2S) all have the 8- area, whi-ch is one-half that for - The symbols refer to the complete model having the epecific fin arrangement tested. In figures
7、 illustrating the effects of the addition of various component pafts, the symbol W refers to the isolated wing and the symbol FTF refers to the wing-fuselage combination. The arrange- ment V(aL) is considered to be the basic confivation. Photographs of the model mounted in the Langley stability tunn
8、el with three different fin arrangements are shown in figure 3. The effects of the addition to the basic configuration of a cockpit canopy and wing-root engine nacelles (fig. 2) were determlned in the investigation. The basic model was also tested with the addition of full-span slats attached to the
9、 leading edge of the wing. These slats were shaped fram - inch aluminum sheet to -the contour of the wing leading edge. The V(b2L) fin arrangement W the latter effect probably remlted from the load carried by the slat itself, which effectiyely extended the wing leading edge fo-d. - was extended and
10、tk stabili%y generally reduced, particularly at the - Lateral characteristics.- The static-lateral derivatives of the basic model and all alternate configurations were obtained between side- slip angles of 530 and are presented in figure 5. Results for the wlng alone, the wing and fuselage, and the
11、complete basic model (fig. 5(a) show that the wing alone has a small amount of directional stability as is indicated by the small negative values of that the wing-fuselage in directional stability for the complete V(aL) configuration, combination is unstable, a) in producing the derivatives cy, Cnr,
12、 and -Czr (fig. 6(e). The addition of dorsal fins to V(b2L) resulted in no appreciable change in the damping in yaw (fig. 6(f). At the O.% position, the V(c2.L) arrangement is slightly more favor- b “ able .than the V(c4) arrangement for producing damping in yaw (fig. 6(g). The tests made with the V
13、(b at the 86-percent spanwise position, they contributed a sizable positive increment. This change in sign of the effective dihedral with lateral movement of the fins is believed to be the result of the nature of the span loadings induced on the wzhg by the lift on the fins. Langley Aeronautical Lab
14、oratory National Advisory Cammittee For Aeronautica Langley Field, Qa. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-14 “ . . . NACA RM L5IAl-0 . “ 1. Bird, John D., Jaquet, -on M., and Cowan, John W. : Effect of Fuse- lage and Tail Surfaces on Low
15、-Speed Yawing Characteristics of a Swept-Wing Model as Determined in Curved-Flow Teat Section of Langley Stability Tunnel. NACA RM L8G13, 1948. 2. MacLachlan, Robert, and Letko, William: Correlation of Two Experi- mental Methods of Determining the Rolling Characteristics of Unswept Wings . NACA TN 1
16、309, 1947. 3. DeYoung, John: Theoretical Additional Span Loading Characterietics Of Wings with Arbitrary Sweep, Aspect Ratio, and Taper Ratio. mACA TN 1491, 1947. 4. QueiJo, M. J., and Wolhart, Walter D.: Experimental Investigation of the Effect of Vertical-Tail Size and Length and of Fuselage Shape
17、 and Length on the Static Lateral Stability Characteristics of a Model w&th 45 Sweptback Wing and Tail Surfacee. NACA TN 2168, 1950. - 5. Kateoff, S., and Mutterperl, William: The End-Plate Effect of a Horizontal-Tail Surface on a Vertical Tail-Surface. NACA TN 797, 1941. 6. Thompson, F. L., ana Gil
18、ruth, R. R.: Motes on the Stalling of Vertical-Tail Surfaces and on Fin Design. MCA Tm 778, 1940. 7. Goodman, Alex: Effect of Various Outboard and Central Fins on Low- Speed Yawing Stability Derivatives of a 60 Delta-Wing Model. NACA RM LWE12a, 1950. 8. Toll, Thomas A., and Queijo, M. J.: Approximat
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASANACARML51A101951ANINVESTIGATIONOFTHEEFFECTOFVERTICALFINLOCATIONANDAREAONLOWSPEEDLATERALSTABILITYDERIVATIVESOFASEMITAILLESSAIRPLANEMODEL

链接地址:http://www.mydoc123.com/p-836051.html