ASHRAE FUNDAMENTALS IP CH 15-2013 Fenestration.pdf
《ASHRAE FUNDAMENTALS IP CH 15-2013 Fenestration.pdf》由会员分享,可在线阅读,更多相关《ASHRAE FUNDAMENTALS IP CH 15-2013 Fenestration.pdf(62页珍藏版)》请在麦多课文档分享上搜索。
1、15.1CHAPTER 15FENESTRATIONFenestration Components 15.1Determining Fenestration Energy Flow. 15.3U-FACTOR (THERMAL TRANSMITTANCE) . 15.3Determining Fenestration U-Factors. 15.3Surface and Cavity Heat Transfer Coefficients 15.5Representative U-Factors for Doors 15.11SOLAR HEAT GAIN AND VISIBLE TRANSMI
2、TTANCE 15.13Solar-Optical Properties of Glazing 15.13Solar Heat Gain Coefficient. 15.17Calculation of Solar Heat Gain . 15.28SHADING AND FENESTRATION ATTACHMENTS 15.29Shading 15.29Fenestration Attachments. 15.30VISUAL AND THERMAL CONTROLS 15.33AIR LEAKAGE . 15.49DAYLIGHTING 15.50Daylight Prediction
3、15.50Light Transmittance and Daylight Use 15.51SELECTING FENESTRATION 15.53Annual Energy Performance 15.53Condensation Resistance . 15.54Occupant Comfort and Acceptance . 15.55Durability . 15.57Supply and Exhaust Airflow Windows 15.58Codes and Standards 15.58Symbols 15.59ENESTRATION is an architectu
4、ral term that refers to the ar-Frangement, proportion, and design of window, skylight, and doorsystems in a building. Fenestration can serve as a physical and/orvisual connection to the outdoors, as well as a means to admit solarradiation for daylighting and heat gain to a space. Fenestration canbe
5、fixed or operable, and operable units can allow natural ventilationto a space and egress in low-rise buildings.Fenestration affects building energy use through four basic mech-anisms: thermal heat transfer, solar heat gain, air leakage, and day-lighting. Fenestration can be used to positively influe
6、nce a buildingsenergy performance by (1) using daylight to offset lighting require-ments, (2) using glazings and shading strategies to control solar heatgain to supplement heating through passive solar gain and mini-mize cooling requirements, (3) using glazing to minimize conduc-tive heat loss, (4)
7、specifying low-air-leakage fenestration products,and (5) integrating fenestration into natural ventilation strategies thatcan reduce energy use for cooling and outdoor air requirements.Todays designers and builders; minimum energy standards andcodes; green building standards, codes, and rating progr
8、ams; andenergy efficiency incentive programs are seeking more from fenes-tration systems and giving credit for high-performing products. Win-dow, skylight, and door manufacturers are responding with new andimproved products to meet those demands. With the advent of sim-ulation software, designing to
9、 improve thermal performance of fen-estration products has become much easier. Through participation inrating and certification programs that require the use of this soft-ware, fenestration manufacturers can take credit for these improve-ments through certified ratings.A designer should consider arc
10、hitectural and code requirements,thermal performance, daylight performance, air leakage, energy andenvironmental impacts, economic criteria, and human comfort whenselecting fenestration. Typically, a wide range of fenestration prod-ucts are available that meet the specifications for a project. Refin
11、ingthe specifications to improve energy performance and enhance a liv-ing or work space can result in lower energy costs, increased produc-tivity, and improved thermal and visual comfort.FENESTRATION COMPONENTSFenestration components include glazing material, either glass orplastic; framing, mullion
12、s, muntin bars, dividers, and opaque doorslabs; and indoor and outdoor shading devices such as louveredblinds, drapes, roller shades, lightshelves, metal grills, and awnings.In this chapter, fenestration and fenestration systems refer to thebasic assemblies and components of window, skylight, and do
13、or sys-tems that are part of the building envelope.Glazing UnitsMost fenestration currently manufactured contain a glazing sys-tem that is packaged in the form of a glazing unit. A glazing unitconsists of two or more glazings that are held apart by an edge-seal.Figure 1 shows the construction of a t
14、ypical double-glazing unit.The most common glazing material is glass, although plastic issometimes used, particularly in the form of intermediate films. Bothmay be clear, tinted, coated, laminated, patterned, or obscured. Clearglass transmits more than 75% of the incident solar radiation andmore tha
15、n 85% of the visible light. Tinted glass is available in manycolors, all of which differ in the amount of solar radiation and visiblelight they transmit and absorb. Some coated glazings are highlyreflective (e.g., mirrors), whereas others have very low reflectance.Some coatings result in visible lig
16、ht transmittance of more thantwice the solar transmittance (desirable for good daylighting, whileminimizing cooling loads). Coatings that reduce radiant heatexchange are called low-emissivity (low-e) coatings. Laminatedglass is made of two panes of glass adhered together. The interlayerThe preparati
17、on of this chapter is assigned to TC 4.5, Fenestration. Fig. 1 Construction Details of Typical Double-Glazing Unit15.2 2013 ASHRAE HandbookFundamentalsbetween the two panes of glass is typically plastic and may be clear,tinted, or coated. Patterned glass is a durable ceramic frit applied toa glass s
18、urface in a decorative pattern. Obscured glass is translucentand is typically used in privacy applications.Low-e coated glass is now used in the vast majority of fenes-tration products installed in the United States, because of its energyefficiency, daylighting, and comfort benefits. Low-e coatings
19、aretypically applied to one of the protected internal surfaces of the glaz-ing unit (surface #2 or #3 in Figure 1), but some manufacturers nowoffer double-glazed products with an additional low-e coating on theexposed room-side surface (surface #4 in Figure 1). Low-e coatingscan also be applied to t
20、hin plastic films for use as one of the middlelayers in glazing units with three or more layers. There are two typesof low-e coating: high-solar-gain coatings primarily reduce heat con-duction through the glazing system, and are intended for cold cli-mates. Low-solar-gain coatings, for hot climates,
21、 reduce solar heatgain by blocking admission of the infrared portion of the solar spec-trum. There are two ways of achieving low-solar-gain low-e perfor-mance: (1) with a special, multilayer solar-infrared-reflectingcoating, and (2) with a solar-infrared-absorbing outer glazing. Toprotect the inner
22、glazing and building interior from heat absorbed bythis outer glazing, a cold-climate-type low-e coating is also used toreduce conduction of heat from the outer pane to the inner one.In addition to low-e, fill gases such as argon and krypton are usedin lieu of air in the gap between the panes. These
23、 fill gases reduceconvective heat transfer across the glazing cavity.The main requirements of the edge seal are to exclude moisture,provide a desiccant for the sealed space, and to retain the glazingunits structural integrity. Further, the edge seal isolates the cavitybetween the glazings, thereby r
24、educing the number of surfaces to becleaned, and creating an enclosure suitable for nondurable coatingsand/or fill gases. The edge seal is composed of a spacer, sealant, anddesiccant.The edge seal contains a spacer that separates glazings and pro-vides a surface for primary and secondary sealant adh
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAEFUNDAMENTALSIPCH152013FENESTRATIONPDF
