ANSI ISA 67.04.01-2006 Setpoints for Nuclear Safety-Related Instrumentation《与核安全相关的仪器仪表设置》.pdf
《ANSI ISA 67.04.01-2006 Setpoints for Nuclear Safety-Related Instrumentation《与核安全相关的仪器仪表设置》.pdf》由会员分享,可在线阅读,更多相关《ANSI ISA 67.04.01-2006 Setpoints for Nuclear Safety-Related Instrumentation《与核安全相关的仪器仪表设置》.pdf(22页珍藏版)》请在麦多课文档分享上搜索。
1、Copyright 2011 ISA. All rights reserved. AMERICAN NATIONAL STANDARD ANSI/ISA-67.04.01-2006 (R2011) Setpoints for Nuclear Safety-Related Instrumentation Reaffirmed 13 October 2011 ANSI/ISA-67.04.01 - 2006 (R2011) Copyright 2011 ISA. All rights reserved. 2ANSI/ISA-67.04.01-2006 (R2011) Setpoints for N
2、uclear Safety-Related Instrumentation ISBN: 978-1-937560-15-7 Copyright 2011 by ISA The International Society of Automation. All rights reserved. Not for resale. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in a
3、ny form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the Publisher. ISA 67 Alexander Drive P. O. Box 12277 Research Triangle Park, North Carolina 27709 USA ANSI/ISA-67.04.01 - 2006 (R2011) Copyright 2011 ISA. All rights rese
4、rved. 3Preface This preface, as well as all footnotes and annexes, is included for information purposes and is not part of ANSI/ISA-67.04.01-2006 (R2011). The standards referenced within this document may contain provisions which, through reference in this text, constitute requirements of this docum
5、ent. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this document are encouraged to investigate the possibility of applying the most recent editions of the standards indicated within this document. Members of I
6、EC and ISO maintain registers of currently valid International Standards. ANSI maintains registers of currently valid U.S. National Standards. This document has been prepared as part of the service of ISA toward a goal of uniformity in the field of instrumentation. To be of real value, this document
7、 should not be static but should be subject to periodic review. Toward this end, the Society welcomes all comments and criticisms and asks that they be addressed to the Secretary, Standards and Practices Board; ISA; 67 Alexander Drive; P. O. Box 12277; Research Triangle Park, NC 27709; Telephone (91
8、9) 549-8411; Fax (919) 549-8288; E-mail: standardsisa.org. The ISA Standards and Practices Department is aware of the growing need for attention to the metric system of units in general, and the International System of Units (SI) in particular, in the preparation of instrumentation standards. The De
9、partment is further aware of the benefits to USA users of ISA standards of incorporating suitable references to the SI (and the metric system) in their business and professional dealings with other countries. Toward this end, this Department will endeavor to introduce SI-acceptable metric units in a
10、ll new and revised standards, recommended practices, and technical reports to the greatest extent possible. Standard for Use of the International System of Units (SI): The Modern Metric System, published by the American Society for Testing b) provide containment isolation; c) provide reactor core co
11、oling; d) provide for containment or reactor heat removal; or e) prevent or mitigate a significant release of radioactive material to the environment or is otherwise essential to provide reasonable assurance that a nuclear power plant or nuclear reactor facility can be operated without undue risk to
12、 the health and safety of the public. 3.11 Performance test: a test that evaluates the performance of equipment against a set of criteria. The results of the test are used to support an operability determination. 3.12 Reference accuracy (also known as Accuracy Rating as defined in ANSI/ISA-51.1-1979
13、 1993): a number or quantity that defines a limit that errors will not exceed when a device is used under specified operating conditions. (See ANSI/ISA-51.1-1979 R1993.) 3.13 Safety limit (SL): a limit on an important process variable that is necessary to reasonably protect the integrity of physical
14、 barriers that guard against the uncontrolled release of radioactivity. (See 10CFR, 50.36c1iA.) 3.14 Sensor: the portion of a channel that responds to changes in a process variable and converts the measured process variable into an instrument signal (See ANSI/ISA-51.1-1979 R1993). 3.15 Trip setpoint
15、 limiting (LTSP): the limiting value for the nominal trip setpoint so that the trip or actuation will occur before the AL is reached, regardless of the process or environmental conditions affecting the instrumentation. 3.16 Trip setpoint nominal (NTSP): a predetermined value for actuation of a final
16、 setpoint device to initiate a protective action. 3.17 Uncertainty: the amount to which an instrument channels output is in doubt (or the allowance made for such doubt) due to possible errors, either random or systematic. The uncertainty is generally identified within a probability and confidence le
17、vel. Additional definitions related to instrumentation terminology and uncertainty may be found in ANSI/ISA-51.1-1979 (R1993) and ANSI/ISA-37.1-1975 (R1982). 4 Establishment of setpoints Setpoints of nuclear safety-related instruments shall be selected such that resultant actions will correct the mo
18、nitored condition or mitigate the consequences of the monitored condition. The importance of the various types of setpoints differs, and as such it may be appropriate to apply setpoint determination requirements of different levels of rigor. For automatic setpoints that have a significant importance
19、 to safety, a rigorous setpoint methodology should be used, for example, those ANSI/ISA-67.04.01 - 2006 (R2011) Copyright 2011 ISA. All rights reserved. 11required by the plant safety analyses and related to Reactor Protection System, Emergency Core-Cooling Systems, Containment Isolation, and Contai
20、nment Heat Removal. However, for setpoints that may not have the same level of importance, the setpoint determination methodology could be less rigorous, for example, those that are not credited in the safety analyses or do not have limiting values. In all cases, the methodologies utilized shall be
21、documented, and appropriate justification for their use shall be provided. The discussions in the remainder of Section 4 are written for safety-related trip or actuation setpoints with rigorous requirements; the discussions are applicable in general for setpoints with less rigorous requirements. NOT
22、E: Although the scope of this standard is limited to nuclear power plants and nuclear reactor facilities, the same principles apply to setpoints for other nuclear facilities. 4.1 Safety Limits Nuclear power plants and nuclear reactor facilities include physical barriers that are designed to prevent
23、the uncontrolled release of radioactivity. Safety limits (SL) are chosen to maintain the integrity of these physical barriers. Safety limits can be defined in terms of directly measured process variables such as pressure or temperature. Safety limits can also be defined in terms of a calculated vari
24、able involving two or more measured process variables, such as departure from nucleate boiling ratio. 4.2 Analytical limits The analytical limit (AL) is the value of a given process variable at which the safety analysis models the initiation of the instrument channel protective action. ALs are docum
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIISA6704012006SETPOINTSFORNUCLEARSAFETYRELATEDINSTRUMENTATION 安全 相关 仪器仪表 设置 PDF

链接地址:http://www.mydoc123.com/p-436950.html