Systems Considerations and Design Options for .ppt
《Systems Considerations and Design Options for .ppt》由会员分享,可在线阅读,更多相关《Systems Considerations and Design Options for .ppt(20页珍藏版)》请在麦多课文档分享上搜索。
1、Systems Considerations and Design Options for Microspacecraft Propulsion Systems,Andrew Ketsdever Air Force Research Laboratory Edwards AFB, CAJuergen Mueller Jet Propulsion Laboratory Pasadena, CA,OUTLINE,Introduction Microspacecraft Micropropulsion Scaling Issues Micronozzle Expansion (AIAA 99-272
2、4) Ion Formation Combustion and Mixing Heat Transfer MEMS Devices Systems Considerations Conclusions,Introduction,Microspacecraft will require a propulsive capability to accomplish missions Microspacecraft - AFRL Definition Small Spacecraft 1000 - 100 kg Microspacecraft 10 - 100 kg Nanospacecraft 1
3、- 10 kg Microspacecraft will be resource limited Mass Power Maximum Voltage Volume,Introduction,Micropropulsion Definition Characteristic size Maximum producible thrust Any propulsion system applicable to 100 kg or less spacecraft At least two sub-classifications Small-scale thrusters Scaled down ve
4、rsions of existing thrusters Reduced power, mass, thrust level MEMS thrusters Require MEMS/novel fabrication techniques Performance scaling issues,Introduction,A wide range of micropropulsion concepts will be required High thrust, fast response Low thrust, high specific impulse Micropropulsion syste
5、ms which have systems simplicity or benefits will be advantageous Performance is always the driver; however, total systems studies must be performed Tankage, power required (power supply mass), integration, propellant feed system, MEMS component performance (limitation?), ,Introduction,Micropropulsi
6、on systems of the future will have to perform as well as large-scale counterparts Robust Reliable Efficient Long lifetime Micropropulsion systems today Losses due to characteristic size Spacecraft limitations on mass, power, volume Lagging development of MEMS hardware,Scaling: Microscale Ion Formati
7、on,Containment of electrons Transport of electrons to discharge chamber walls is major loss mechanism for ion micro-thrusters Typically magnetic fields are used to contain electrons and increase ionization path length l = 1 / no si Rg = me vo,perp / (q B) Want Rg B = 0.1 Tesla 1 mm diameter = B = 10
8、 Tesla (Yashko, et al., IEPC 97-072),Scaling: Microscale Ion Formation,Grid acceleration and breakdown Micro-ion thruster grids will have to hold off significant potential differences Lower ionization = higher accelerating potential for high specific impulse Voltage isolation with very small insulat
9、or thicknesses Material dependencies Two modes of breakdown,Scaling: Microscale Ion Formation,Micro-ion thruster modeling issues Lower degrees of ionization = more influence of neutral flow behavior Traditionally, PIC codes assume some uniformly varying neutral flowfield Coupled approaches (DSMC/PIC
10、) may be required For very low ionization, a de-coupled approach to plasma and neutral flow may be useful May be only data available for some systems VALIDATION DATA REQUIRED,Scaling: Micro-Combustion,Advanced liquid and solid propellants are targeted at mission requirements involving High thrust Fa
11、st response Scaling issues arise which may limit characteristic size Mixing length required for bi-propellants Residence time in combustion chamber Combustion instabilities Heat transfer,Scaling: Micro-Heat Transfer,Radiation qr AT4 L2 T4 Can be a major loss mechanism at high temperatures Conduction
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SYSTEMSCONSIDERATIONSANDDESIGNOPTIONSFORPPT
