2013届福建省福建师大附中高三5月高考三轮模拟理科数学试卷与答案(带解析).doc
《2013届福建省福建师大附中高三5月高考三轮模拟理科数学试卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2013届福建省福建师大附中高三5月高考三轮模拟理科数学试卷与答案(带解析).doc(20页珍藏版)》请在麦多课文档分享上搜索。
1、2013届福建省福建师大附中高三 5月高考三轮模拟理科数学试卷与答案(带解析) 选择题 复数 (是虚数单位)在复平面内对应的点是位于( ) A第一象限 B第二象限 C第三象限 D第四象限 答案: D 试题分析:根据题意 ,由于复数 ,则实部为 1,虚部为 -1,那么可知复平面内对应的点是位于第四象限,选 D. 考点:复数的代数运算 点评:本题考查复数的代数运算,将其转化为 a+bi 的形式是关键,属于基础题 如图所示,有三根针和套在一根针上的 个金属片,按下列规则,把金属片从一根针上全部移到另一根针上。 ( 1)每次只能移动一个金属片; ( 2)在每次移动过程中,每根针上较大的金属片不能放在较
2、小的金属片上面。 若将 个金属片从 1号针移到 3号针最少需要移动的次数记为 ,则 =( ) A 33 B 31 C 17 D 15 答案: B 试题分析:根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减 1的移动次数都移动到 2柱,然后把最大的盘子移动到 3柱,再用同样的次数从 2柱移动到 3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可解:设 h( n)是把 n个盘子从 1柱移到 3柱过程中移动盘子之最少次数 n=1时, h( 1) =1; n=2时,小盘 2 柱,大盘 3 柱,小柱从 2柱 3 柱,完成,即 h( 2) =3=22-1; n=3时,小
3、盘 3 柱,中盘 2 柱,小柱从 3柱 2 柱, 用 h( 2)种方法把中、小两盘移到 2柱,大盘 3柱;再用 h( 2)种方法把中、小两盘从 2柱 3柱,完成 , h( 3) =h( 2) h( 2)+1=32+1=7=23-1, h( 4) =h( 3) h( 3) +1=72+1=15=24-1, 以此类推, h( n) =h( n-1) h( n-1) +1=2n-1,故答案:为 31,故选 B 考点:归 纳推理 点评:本题考查了归纳推理、图形变化的规律问题,根据题目信息,得出移动次数分成两段计数是解题的关键 已知平面上的线段及点 ,在上任取一点 ,线段 长度的最小值称为点到线段的距离
4、,记作 设是长为 2的线段,点集 所表示图形的面积为( ) A B C D 答案: D 试题分析:由题意知集合 D=P|d( P, l) 1所表示的图形是一个边长为 2的正方形和两个半径是 1的半圆,做出面积( 2)由题意知集合 D=P|d( P, l) 1所表示的图形是一个边长为 2 的正方形和两个半径是 1 的半圆, S=22+=4+,故答案:为 D. 考点:圆的面积和正方体面积 点评:本题考查点到直线的距离公式,考查两点之间的距离公式,考查利用两点式写直线的方程,考查点到线段的距离,本题是一个综合题目 如图所示,在棱长为 2的正方体 内(含正方体表面)任取一点 ,则 的概率 ( ) A
5、B C D 答案: A 试题分析:根据题意,由于在棱长为 2的正方体 内(含正方体表面)任取一点 ,则 ,根据题意点 Z的范围是 0,2那么可知满足题意的概率值为 ,故答案:为 A. 考点:向量的数量积 点评:主要是考 查了空间向量的坐标运算,属于基础题。 设 ,则二项式 展开式中的 项的系数为( ) A B 20 C D 160 答案: C 试题分析:根据题意,由于 ,那么可知 a=-2,同时由于二项式 ,令 12-3r=3,r=3,则可知展开式中的 项的系数为 ,故答案:为 C 考点:二项式定理 点评:主要是考查了二项式定理的展开式通项公式的运用,属于基础题。 的三个内角 对应的边分别 ,
6、且 成等差数列,则角 等于( ) A B C D 答案: B 试题分析:根据题意,由于 成等差数列,则可知,那么根据内角的取值范围可知,那么角 B的值为 ,选 B. 考点:正弦定理和等差数列 点评:主要是考查了等差数列和正弦定理的运用,属于基础题。 阅读如图所示的程序框图,运行相应的程序,若输入 ,则输出的值为( ) A 12 B 6 C 3 D 0 答案: B 试题分析:根据题意,由于输入 ,则 72=30,r=12,m=30,n=12,依次得到 30=12 ,r=6,m=12,n=6,12=6 ,此时输出 n的值为 6,故选 B. 考点:流程图 点评:主要是考查了条件结构的运用,以及转换变
7、量的运用,属于基础题。 设 z=x+y,其中 x, y满足 当 z的最大值为 6时, 的值为( ) A 3 B 4 C 5 D 6 答案: A 试题分析:先根据条件画出可行域,观察可行域,当直线 z=x+y过 A点时取最大值,从而求出 k值解:作出可行域如图: 直线 x+y=6 过 x-y=0,y=k,的交点 A( k, k)时, z=x+y 取最大, 2k=6, k=3,故答案:为 3,选 A. 考点:线性规划 点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题 已知集合 , ,且 ,则( ) A 4 B 5 C 6 D 7 答案: D 试题分析:根据题意,由于集合 ,
8、,且 ,那么可知, a1,同时 a=2, b=5,可知 a+b=7,故答案:为 7,选 D. 考点:交集 点评:主要是考查了对数不等式的求解,以及交集的运算,属于基础题。 设 ,则 “ ”是 “直线 与直线平行 ”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 答案: C 试题分析:根据两直线平行的充要条件可知为直线 与直线平行 ”,即满足 a-4=0,a=4,且两直线不重合,故可知“ ”是 “直线 与直线 平行 ”的充要条件,选 C. 考点:充分条件 点评:主要是考查了两直线平行的充要条件的运用,属于基础题。 填空题 我国齐梁时代的数学家祖 (公元 5-6世
9、纪)提出了一条原理: “幂势既同,则积不容异 ”这句话的意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等 设:由曲线 和直线 , 所围成的平面图形,绕 轴旋转一周所得到的旋转体为 ;由同时满足 , , ,的点 构成的平面图形 ,绕 轴旋转一周所得到的旋转体为 .根据祖 原理等知识,通过考察 可以得到 的体积为 答案: 试题分析:根据题意,由于满足 , , ,的点 构成的平面图形 ,绕 轴旋转一周所得到的旋转体为 ,可知围成的面积为圆内的两个对称的部分,可知得到两个这样的面积的曲边梯形,且面积为 ,绕着 y
10、轴旋转得到的是两个圆锥的体积,那可知得到体积为 ,那么根据祖 原理可知,夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得的两个截面的面积总是相等 ,那么这两个几何体的体积相等,即可知由曲线 和直线 , 所围成的平面图形,绕 轴旋转一周所得到的旋转体为 为 ,故答案:为 。 考点:祖 原理 点评:主要是考查了类比推理的运用,属于中档题。 已知某几何体的三视图如图所示,则该几何体的体积为 答案: 试题分析:由几何体的三视图知,该几何体是底面是边长为 4的正方形,高为2的四棱锥,由此能求出该几何体的体积解:由几何体的三视图知,该几何体是如图所示的四棱锥, 其中底面是边长
11、为 4的正方形 ABCD, PD 面 ABCD, PD=2, 该几何体的体积 考点 :三视图求几何体的面积、体积 点评:题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的体积三视图的投影规则是: “主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等 ”三视图是高考的新增考点,不时出现在高考试题中,应予以重视 如图,矩形 的一边 在 轴上,另外两个顶点 在函数的图象上 .若点 的坐标为 且 ,记矩形的周长为 ,则 答案: 试题分析:根据题意,由于点 ,矩形
12、的周长为 , ,则可知点 ,那么可知周长为长和宽的和的二倍,即根据函数值相等可知 ,那么可知4( 2+3+.+10) =216,故可知答案:为 216. 考点:数列的运用 点评:主要是通过函数与数列的知识来求解数列的通项公式,进而求解和式,属于基础题。 在平面直角坐标系 中,若双曲线 的焦距为 8,则 答案: 试题分析:通过双曲线的方程,判断实轴所在轴,求出 c,利用焦距求出 m的值即可 . 解:因为在平面直角坐标系 Oxy 中,双曲线 的焦距为 8,所以 m 0,焦点在 x轴, 所以 a2=m, b2=m2+4,所以 c2=m2+m+4,又双曲线的焦距为 8,所以: m2+m+4=16,即
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 福建省 福建 师大附中 高考 三轮 模拟 理科 数学试卷 答案 解析
