[同步]2014年北师大版八年级上 5.7用二元一次方程组确定一次函数(带解析).doc
《[同步]2014年北师大版八年级上 5.7用二元一次方程组确定一次函数(带解析).doc》由会员分享,可在线阅读,更多相关《[同步]2014年北师大版八年级上 5.7用二元一次方程组确定一次函数(带解析).doc(13页珍藏版)》请在麦多课文档分享上搜索。
1、同步 2014年北师大版八年级上 5.7用二元一次方程组确定一次函数(带解析) 选择题 ( 2014 太原二模)下面四条直线,其中直线上每个点的坐标都是二元一次方程 2xy=2的解的是( ) A B C D 答案: B 试题分析:根据两点确定一条直线,当 x=0,求出 y的值,再利用 y=0,求出 x的值,即可得出一次函数图象与坐标轴交点,即可得出图象 解: 2xy=2, y=2x2, 当 x=0, y=2;当 y=0, x=1, 一次函数 y=2x2,与 y轴交于点( 0, 2),与 x轴交于点( 1, 0), 即可得出选项 B符合要求, 故选: B 点评:此题主要考查了一次函数与二元一次方
2、程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键 如图,已知函数 y=ax+b和 y=kx的图象交于点 P,则根据图象可得,关于 x、y的二元一次方程组 的解是( ) A B C D 答案: B 试题分析:点 P( 3, 1)是两个函数图象的交点,同时满足函数式;即同时是函数式以及方程组的公共解,则关于 x、 y的二元一次方程组 的解即可求出 解:因为函数图象交点坐标为两函数式组成的方 程组的解 因此方程组 的解是 ; 故选择 B 点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函
3、数图象的交点坐标 已知方程组 的解为 ,则函数 y=2x+3与 y= x+ 的交点坐标为( ) A( 1, 1) B( 1, 1) C( 1, 1) D( 1, l) 答案: A 试题分析:由于函数图象交点坐标为两函数式组成的方程组的解因此方程组的解,即为两个函数的交点坐标 解: 方程组 的解为 ; ( 1, 1)同时满足函数 y=2x+3与 y= x+ ; 即( 1, 1)是函数 y=2x+3与 y= x+ 的交点坐标 故选 A 点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标
4、 如图,已知一次函数 y=ax+b和 y=kx的图象相交于点 P,则根据图象可得二元一次方程组 的解是( ) A B C D 答案: A 试题分析:根据一次函数 y=ax+b和正比例 y=kx的图象可知,点 P就是一次 函数 y=ax+b和正比例 y=kx的交点,即二元一次方程组 y=ax+by=kx的解 解:根据题意可知, 二元一次方程组 的解就是一次函数 y=ax+b和正比例 y=kx的图象的交点 P的坐标, 由一次函数 y=ax+b和正比例 y=kx的图象,得 二元一次方程组 的解是 故选 A 点评:此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数 y=a
5、x+b和正比例 y=kx的图象交点 P之间的联系,考查了学生对题意的理解能力 如果 是方程组 的解,则一次函数 y=mx+n的式为( ) A y=x+2 B y=x2 C y=x2 D y=x+2 答案: D 试题分析:把方程组的解代入方程组得到关于 m、 n的方程组,然后求出 m、 n的值,再代入函数式即可得解 解:根据题意,将 代入方程组 , 得 , 即 , 2 得, 6m2n=2 , 得, 3m=3, m=1, 把 m=1代入 ,得, 3n=1, n=2, 一次函数式为 y=x+2 故选 D 点评:本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于 m、 n的方程组并求出
6、m、 n的值是解题的关键 若方程组 的解为 ,则一次函数 y= 与 y= 交点坐标( ) A( b, a) B( a, a) C( a, b) D( b, b) 答案: C 试题分析:由于函数图象交点坐标为两函数式组成的方程组的解,因此联立两函数式所得方程组的解,就是两个函数图象的交点坐标 解:将方程组的两个方程变形后可得: y= , y= ; 因此两个函数图象的交点坐标就是方程组的解 故选 C 点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标 把方程 x+1=4y+ 化为 y=
7、kx+b的形式,正确的是( ) A y= x+1 B y= x+ C y= x+1 D y= x+ 答案: B 试题分析:将同类型进行合并,然后移项、去 y的系数即可 解:移项得: 4y= x+1, 即: y= x+ 故选 B 点评:把方程 x+1=4y+ 化为 y=kx+b的形式,就是解关于 y的方程,解方程是解决本题的关键 图中两直线 L1、 L2的交点坐标可以看作方程组( )的解 A B C D 答案: B 试题分析:因为函数图象交点坐标为两函数式组成的方程组的解因此本题应分别解四个选项中的方程组,然后即可确定正确的选项 解: A中方程组的解为: ,故错误,不符合题意; B中的方程组的解
8、为: ,故正确,符合题意; C中方程组的解为: ,故错误,不符合题意; D中方程组的解为: ,故错误,不符合题意, 故选 B 点评:本题考查了一次函数与二元一次方程组的知识,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标 如图所示,可以得出不等式组 的解集是( ) A x 4 B 1 x 0 C 0 x 4 D 1 x 4 答案: D 试题分析:根据图象找出两直线在 x轴上方部分的 x的取值范围 解:由图可知,不等式组的解集是 1 x 4 故选 D 点评:本题考查了一次函数与二元一次
9、方程组的关系,数形结合仔细观 察图形是解题关键 如图,是用图象法解某二元一次方程组的图象,则这个二元一次方程组是( ) A B C D 答案: B 试题分析:根据图象,求出两条直线的式,由这两条直线的式组成的方程组即为所求 解:由图象知, 直线 l1过点( 0, 2)、( 2, 0),设此直线的式为 y=kx+b, , 解得: , y=x+2, 整理得: x+y2=0; 直线 l2过点( 1, 1)、( 0, 1),设式为 y=mx+n, 同理可得: 2xy1=0; 这个二元一次方程组是由直线 l1、直线 l2的式组成,即 , 故选 B 点评:本题主要考查的是根据一次函数的图象求一次函数的式
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同步 2014 北师大 年级 5.7 二元 一次 方程组 确定 函数 解析
