【考研类试卷】考研数学二(线性方程组)-试卷8及答案解析.doc
《【考研类试卷】考研数学二(线性方程组)-试卷8及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学二(线性方程组)-试卷8及答案解析.doc(9页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学二(线性方程组)-试卷 8 及答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A 是 ms 阶矩阵,B 为 sn 阶矩阵,则方程组 BX=0 与 ABX=0 同解的充分条件是 ( )(分数:2.00)A.r(A)=sB.r(A)=mC.r(B)=sD.r(B)=n3.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2
2、2B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 - 2 )D.AX=b 的通解为 k 1 1 +k 2 2 + 4.设有方程组 AX=0 与 BX=0,其中 A,B 都是 mn 阶矩阵,下列四个命题: (1)若 AX=0 的解都是 BX:0的解,则 r(A)r(B) (2)若 r(A)r(B),则 AX=0 的解都是 BX=0 的解 (3)若 AX=0 与 BX=0 同解,则 r(A)=r(B) (4)若 r(A)=r(B),则 AX=0 与 BX=0 同解以上命题正确的是( )(分数:2.00)A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)5
3、.设 A 是 mn 阶矩阵,B 是 nm 阶矩阵,则( )(分数:2.00)A.当 mn 时,线性齐次方程组 ABX=0 有非零解B.当 mn 时,线性齐次方程组 ABX=0 只有零解C.当 nm 时,线性齐次方程组 ABX=0 有非零解D.当 nm 时,线性齐次方程组 ABX=0 只有零解6.设 A 为 mn 阶矩阵,则方程组 AX=b 有唯一解的充分必要条件是( )(分数:2.00)A.r(A)=mB.r(A)=nC.A 为可逆矩阵D.r(A)=n 且 b 可由 A 的列向量组线性表示二、填空题(总题数:2,分数:4.00)7.设 A= (分数:2.00)填空项 1:_填空项 1:_8.设
4、 为非零向量,A= (分数:2.00)填空项 1:_三、解答题(总题数:19,分数:44.00)9.解答题解答应写出文字说明、证明过程或演算步骤。_10.设向量组 1 , 2 , n-1 为 n 维线性无关的列向量组,且与非零向量 1 , 2 正交证明: 1 , 2 线性相关(分数:2.00)_11.设齐次线性方程组 (分数:2.00)_12.设 A 为三阶矩阵,A 的第一行元素为 a,b,c 且不全为零,又 B= (分数:2.00)_13.a,b 取何值时,方程组 (分数:2.00)_14.A,B 为 n 阶矩阵且 r(A)+r(B)n证明:方程组 AX=0 与 BX=0 有公共的非零解(分
5、数:2.00)_设() , 1 , 2 , 3 , 4 为四元非齐次线性方程组 BX=b 的四个解,其中 1 = (分数:6.00)(1).求方程组()的基础解系;(分数:2.00)_(2).求方程组()BX=0 的基础解系;(分数:2.00)_(3).()与()是否有公共的非零解?若有公共解求出其公共解(分数:2.00)_设() (分数:4.00)(1).求(),()的基础解系;(分数:2.00)_(2).求(),()的公共解(分数:2.00)_15.() (分数:2.00)_16.证明线性方程组 ()有解的充分必要条件是方程组 (分数:2.00)_17.设() 写出() (分数:2.00)
6、_18.设 A 是 ms 阶矩阵,B 是 sn 阶矩阵,且 r(B)=r(AB)证明:方程组 BX=0 与 ABX=0 是同解方程组(分数:2.00)_设 A,B,C,D 都是 n 阶矩阵,r(CA+DB)=n(分数:4.00)(1).证明: (分数:2.00)_(2).设 1 , 2 , r 与 1 , 2 , s 分别为方程组 AX=0 与 BX=0 的基础解系,证明:考 1 , 2 , r , 1 , 2 , s 线性无关(分数:2.00)_19.设 A 为 n 阶矩阵,A 11 0证明:非齐次线性方程组 AX=b 有无穷多个解的充分必要条件是 A * b=0(分数:2.00)_20.证
7、明:r(AB)minr(A),r(B)(分数:2.00)_21.证明:r(A)=r(A T A)(分数:2.00)_22.设 A 是 mn 阶矩阵,且非齐次线性方程组 AX=b 满足 r(A)= (分数:2.00)_23.讨论方程组 (分数:2.00)_24.设 A= (分数:2.00)_考研数学二(线性方程组)-试卷 8 答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 A 是 ms 阶矩阵,B 为 sn 阶矩阵,则方程组 BX=0 与 ABX=0 同解的
8、充分条件是 ( )(分数:2.00)A.r(A)=s B.r(A)=mC.r(B)=sD.r(B)=n解析:解析:设 r(A)=s,显然方程组 BX=0 的解一定为方程组 ABX=0 的解,反之,若 ABX=0,因为 r(A)=s,所以方程组 AY=0 只有零解,故 BX=0,即方程组 BX=0 与方程组 ABX=0 同解,选(A)3.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k
9、( 1 - 2 ) D.AX=b 的通解为 k 1 1 +k 2 2 + 解析:解析:因为非齐次线性方程组 AX=b 的解不唯一,所以 r(A)n,又因为 A * O,所以 r(A)=n-1, 2 - 1 为齐次线性方程组 AX=0 的基础解系,选(C)4.设有方程组 AX=0 与 BX=0,其中 A,B 都是 mn 阶矩阵,下列四个命题: (1)若 AX=0 的解都是 BX:0的解,则 r(A)r(B) (2)若 r(A)r(B),则 AX=0 的解都是 BX=0 的解 (3)若 AX=0 与 BX=0 同解,则 r(A)=r(B) (4)若 r(A)=r(B),则 AX=0 与 BX=0
10、同解以上命题正确的是( )(分数:2.00)A.(1)(2)B.(1)(3) C.(2)(4)D.(3)(4)解析:解析:若方程组 AX=0 的解都是方程组 BX=0 的解,则 n-r(A)n-r(B),从而 r(A)r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但反之不对,所以(3)是正确的,(4)是错误的,选(B)5.设 A 是 mn 阶矩阵,B 是 nm 阶矩阵,则( )(分数:2.00)A.当 mn 时,线性齐次方程组 ABX=0 有非零解 B.当 mn 时,线性齐次方程组 ABX=0 只有零解C.当 nm 时,线性齐次方程组 ABX=0 有非零解D.
11、当 nm 时,线性齐次方程组 ABX=0 只有零解解析:解析:AB 为 m 阶方阵,当 mn 时,因为 r(A)n,r(B)n 且,r(AB)minr(A),r(B),所以r(AB)m,于是方程组 ABX=0 有非零解,选(A)6.设 A 为 mn 阶矩阵,则方程组 AX=b 有唯一解的充分必要条件是( )(分数:2.00)A.r(A)=mB.r(A)=nC.A 为可逆矩阵D.r(A)=n 且 b 可由 A 的列向量组线性表示 解析:解析:方程组 AX=b 有解的充分必要条件是 b 可由矩阵 A 的列向量组线性表示,在方程组 AX=b 有解的情形下其有唯一解的充分必要条件是 r(A)=n,故选
12、(D)二、填空题(总题数:2,分数:4.00)7.设 A= (分数:2.00)填空项 1:_ (正确答案:正确答案:2)填空项 1:_ (正确答案:1)解析:解析:A8.设 为非零向量,A= (分数:2.00)填空项 1:_ (正确答案:正确答案:3,k(-3,1,2) T )解析:解析:AX=0 有非零解,所以A=0,解得 a=3,于是 A= 三、解答题(总题数:19,分数:44.00)9.解答题解答应写出文字说明、证明过程或演算步骤。_解析:10.设向量组 1 , 2 , n-1 为 n 维线性无关的列向量组,且与非零向量 1 , 2 正交证明: 1 , 2 线性相关(分数:2.00)_正
13、确答案:(正确答案:令 A= )解析:11.设齐次线性方程组 (分数:2.00)_正确答案:(正确答案:D= =a+(n-1)b(a-b) n-1 (1)当 ab,a(1-n)b 时,方程组只有零解;(2)当 a=b 时,方程组的同解方程组为 x 1 +x 2 +x n =0,其通解为 X=k 1 (-1,1,0,0) T +k 2 (-1,0,1,0) T +k n-1 (-1,0,0,1) T (k 1 ,k 2 ,k n-1 为任意常数); (3)令 A= )解析:12.设 A 为三阶矩阵,A 的第一行元素为 a,b,c 且不全为零,又 B= (分数:2.00)_正确答案:(正确答案:由
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性方程组 答案 解析 DOC
