【考研类试卷】考研数学三(线性代数)模拟试卷130及答案解析.doc
《【考研类试卷】考研数学三(线性代数)模拟试卷130及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(线性代数)模拟试卷130及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(线性代数)模拟试卷 130 及答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:7,分数:14.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 A 为 n 阶矩阵,A 2 =A,则下列成立的是( )(分数:2.00)A.A=OB.A=EC.若 A 不可逆,则 A=OD.若 A 可逆,则 A=E3.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关C. 1
2、 , 2 , 4 线性无关D. 1 , 2 , 4 线性相关4.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 AX=b 一定有无穷多组解C.A T A 一定可逆D.A T A 可逆的充分必要条件是 r(A)=n5.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 2 )D.AX=b 的通解为 k 1
3、 1 +k 2 2 + 6.与矩阵 相似的矩阵为( ) (分数:2.00)A.B.C.D.7.设 (分数:2.00)A.合同且相似B.相似但不合同C.合同但不相似D.既不相似又不合同二、填空题(总题数:4,分数:8.00)8.设 A,B 都是三阶矩阵,A 相似于 B,且EA=E2A=E3A=0,则B 1 +2E= 1.(分数:2.00)填空项 1:_9.设 (分数:2.00)填空项 1:_10.设 (分数:2.00)填空项 1:_11.设 (分数:2.00)填空项 1:_三、解答题(总题数:13,分数:32.00)12.解答题解答应写出文字说明、证明过程或演算步骤。_13.设 A 是正交矩阵,
4、且A0证明:E+A=0(分数:2.00)_14.设 A,B 为三阶矩阵,且 AB,且 1 =1, 2 =2 为 A 的两个特征值,B=2,求 (分数:2.00)_15.设 A 为 n 阶矩阵,证明:r(A)=1 的充分必要条件是存在 n 维非零列向量 ,使得 A= T (分数:2.00)_16.设 1 , 2 , n 为 n 个 n 维列向量,证明: 1 , 2 , n 线性无关的充分必要条件是 (分数:2.00)_17.设齐次线性方程组 (分数:2.00)_设 1 , 2 , 3 , 4 为四元非齐次线性方程组 BX=b 的四个解,其中 (分数:6.00)(1).求方程组()的基础解系;(分
5、数:2.00)_(2).求方程组()BX=0 的基础解系;(分数:2.00)_(3).()与()是否有公共的非零解?若有公共解求出其公共解(分数:2.00)_18.证明:r(A)=r(A T A)(分数:2.00)_设矩阵 (分数:4.00)(1).若 A 有一个特征值为 3,求 a;(分数:2.00)_(2).求可逆矩阵 P,使得 P T A 2 P 为对角矩阵(分数:2.00)_设 A 是三阶矩阵, 1 , 2 , 3 为三个三维线性无关的列向量,且满足 A 1 = 2 + 3 ,A 2 = 1 + 3 ,A 3 = 1 + 2 (分数:4.00)(1).求矩阵 A 的特征值;(分数:2.
6、00)_(2).判断矩阵 A 可否对角化(分数:2.00)_19.(1)若 A 可逆且 AB,证明:A * B * ; (2)若 AB,证明:存在可逆矩阵 P,使得 APBP(分数:2.00)_20.设 A,B 为 n 阶正定矩阵证明:A+B 为正定矩阵(分数:2.00)_21.设 A 为 m 阶正定矩阵,B 为 mn 阶实矩阵证明:B T AB 正定的充分必要条件是 r(B)=n(分数:2.00)_考研数学三(线性代数)模拟试卷 130 答案解析(总分:54.00,做题时间:90 分钟)一、选择题(总题数:7,分数:14.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(
7、分数:2.00)_解析:2.设 A 为 n 阶矩阵,A 2 =A,则下列成立的是( )(分数:2.00)A.A=OB.A=EC.若 A 不可逆,则 A=OD.若 A 可逆,则 A=E 解析:解析:因为 A 2 =A,所以 A(EA)=O,由矩阵秩的性质得 r(A)+r(EA)=n,若 A 可逆,则 r(A)=n,所以 r(EA)=0,A=E,选 D3.若向量组 1 , 2 , 3 , 4 线性相关,且向量 4 不可由向量组 1 , 2 , 3 线性表示,则下列结论正确的是( )(分数:2.00)A. 1 , 2 , 3 线性无关B. 1 , 2 , 3 线性相关 C. 1 , 2 , 4 线性
8、无关D. 1 , 2 , 4 线性相关解析:解析:若 1 , 2 , 3 线性无关,因为 4 不可由 1 , 2 , 3 线性表示,所以 1 , 2 , 3 , 4 线性无关,矛盾,故 1 , 2 , 3 线性相关,选 B4.设 A 是 mn 矩阵,且 mn,下列命题正确的是( )(分数:2.00)A.A 的行向量组一定线性无关B.非齐次线性方程组 AX=b 一定有无穷多组解C.A T A 一定可逆D.A T A 可逆的充分必要条件是 r(A)=n 解析:解析:若 A T A 可逆,则 r(A T A)=n,因为 r(A T A)=r(A),所以 r(A)=n;反之,若 r(A)=n,因为r(
9、A T A)=r(A),所以 A T A 可逆,选 D5.设 n 阶矩阵 A 的伴随矩阵 A * O,且非齐次线性方程组 AX=b 有两个不同解 1 , 2 ,则下列命题正确的是( )(分数:2.00)A.AX=b 的通解为 k 1 1 +k 2 2B. 1 + 2 为 AX=b 的解C.方程组 AX=0 的通解为 k( 1 2 ) D.AX=b 的通解为 k 1 1 +k 2 2 + 解析:解析:因为非齐次线性方程组 AX=b 的解不唯一,所以 r(A)n,又因为 A * O,所以 r(A)=n1, 2 1 ,为齐次线性方程组 AX=0 的基础解系,选 C6.与矩阵 相似的矩阵为( ) (分
10、数:2.00)A.B.C.D. 解析:解析:A 的特征值为 1,2,0,因为特征值都是单值,所以 A 可以对角化,又因为给定的四个矩阵中只有选项 D 中的矩阵特征值与 A 相同且可以对角化,所以选 D7.设 (分数:2.00)A.合同且相似B.相似但不合同C.合同但不相似 D.既不相似又不合同解析:解析:显然 A,B 都是实对称矩阵,由EA=0,得 A 的特征值为 1 =1, 2 =2, 3 =9,由EB=0,得 B 的特征值为 1 =1, 2 = 3 =3,因为 A,B 惯性指数相等,但特征值不相同,所以 A,B 合同但不相似,选 C二、填空题(总题数:4,分数:8.00)8.设 A,B 都
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 线性代数 模拟 130 答案 解析 DOC
